华信教育资源网
非线性系统(第三版)(英文版)
丛   书   名: 国外计算机科学教材系列
作   译   者:(美) Hassan K. Khalil(哈森 • K. 哈里尔) 出 版 日 期:2019-01-01
出   版   社:电子工业出版社 维   护   人:马岚 
书   代   号:G0357360 I S B N:9787121357367

图书简介:

非线性系统的研究近年来受到越来越广泛的关注,国外许多工科院校已将"非线性系统”作为相关专业研究生的学位课程。本书是美国密歇根州立大学电气与计算机工程专业的研究生教材,全书内容按照数学知识的由浅入深分成了四个部分。基本分析部分介绍了非线性系统的基本概念和基本分析方法;反馈系统分析部分介绍了输入-输出稳定性、无源性和反馈系统的频域分析;现代分析部分介绍了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;非线性反馈控制部分介绍了反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步设计法、基于无源性的控制和高增益观测器等。此外本书附录还汇集了一些书中用到的数学知识,包括基本数学知识的复习、压缩映射和一些较为复杂的定理证明。本书已根据作者于2017年2月更新过的勘误表进行过更正。
您的专属联系人更多
关注 评论(0) 分享
配套资源 图书内容 样章/电子教材 图书评价
  • 配 套 资 源
    图书特别说明:由于成本考虑,本书不作为参考书赠送。如果确有授课教材选用的需求,可将详细情况发送给本书专属联系人,我们将进一步沟通并酌情处理。

    本书资源

    会员上传本书资源

  • 图 书 内 容

    内容简介

    非线性系统的研究近年来受到越来越广泛的关注,国外许多工科院校已将"非线性系统”作为相关专业研究生的学位课程。本书是美国密歇根州立大学电气与计算机工程专业的研究生教材,全书内容按照数学知识的由浅入深分成了四个部分。基本分析部分介绍了非线性系统的基本概念和基本分析方法;反馈系统分析部分介绍了输入-输出稳定性、无源性和反馈系统的频域分析;现代分析部分介绍了现代稳定性分析的基本概念、扰动系统的稳定性、扰动理论和平均化以及奇异扰动理论;非线性反馈控制部分介绍了反馈线性化,并给出了几种非线性设计工具,如滑模控制、李雅普诺夫再设计、反步设计法、基于无源性的控制和高增益观测器等。此外本书附录还汇集了一些书中用到的数学知识,包括基本数学知识的复习、压缩映射和一些较为复杂的定理证明。本书已根据作者于2017年2月更新过的勘误表进行过更正。

    图书详情

    ISBN:9787121357367
    开 本:16(185*260)
    页 数:760
    字 数:1581

    本书目录

    Contents
    1  Introduction
        1.1  Nonlinear Models and Nonlinear Phenomena
        1.2  Examples
              1.2.1  Pendulum Equation
              1.2.2  Tunnel-Diode Circuit
              1.2.3  Mass-Spring System
              1.2.4  Negative-Resistance Oscillator
              1.2.5  Artificial Neural Network
              1.2.6  Adaptive Control
              1.2.7  Common Nonlinearities
        1.3  Exercises
    2   Second-Order Systems
        2.1  Qualitative Behavior of Linear Systems
        2.2  Multiple Equilibria
        2.3  Qualitative Behavior Near Equilibrium Points
        2.4  Limit Cycles
        2.5  Numerical Construction of Phase Portraits
        2.6  Existence of Periodic Orbits
        2.7  Bifurcation
        2.8  Exercises
    3 Fundamental Properties
        3.1  Existence and Uniqueness
        3.2  Continuous Dependence on Initial Conditions and Parameters
        3.3  Differentiability of Solutions and Sensitivity Equations
        3.4  Comparison Principle
        3.5  Exercises
    4   Lyapunov Stability
       4.1  Autonomous Systems
       4.2  The Invariance Principle
       4.3  Linear Systems and Linearization
       4.4  Comparison Functions
       4.5  Nonautonomous Systems
       4.6  Linear Time-Varying Systems and Linearization
       4.7  Converse Theorems
       4.8  Boundedness and Ultimate Boundedness
       4 9  Input-to-State Stability
       4.10 Exercises
    5   Input-Output Stability
        5.1  L Stability
        5.2  L1 Stability of State Models
        5.3  L2 Gain
        5.4  Feedback Systems: The Small-Gain Theorem
        5.5  Exercises
    6   Passivity
        6.1  Memoryless Functions
        6.2  State Models
        6.3  Positive Real Transfer Functions
        6.4  L2 and Lyapunov Stability
        6.5  Feedback Systems: Passivity Theorems
        6.6  Exercises
    7  Frequency Domain Analysis of Feedback Systems
        7.1  Absolute Stability
              7.1.1  Circle Criterion
              7.1.2  Popov Criterion
        7.2  The Describing Function Method
        7.3  Exercises
    8  Advanced Stability Analysis
        8.1  The Center Manifold Theorem
        8.2  Region of Attraction
        8.3  Invariance-like Theorems
        8.4  Stability of Periodic Solutions
        8.5  Exercises
    9  Stability of Perturbed Systems
       9.1  Vanishing Perturbation
        9.2  Nonvanishing Perturbation
        9.3  Comparison Method
       9.4  Continuity of Solutions on the Infinite Interval
        9.5  Interconnected Systems
        9.6  Slowly Varying Systems
        9.7  Exercises
    10 Perturbation Theory and Averaging
        10.1 The Perturbation Method
        10.2 Perturbation on the Infinite Interval
        10.3 Periodic Perturbation of Autonomous Systems
        10.4 Averaging
        10.5 Weakly Nonlinear Second-Order Oscillators
        10 6 General Averaging
        10.7 Exercises
    11 Singular Perturbations
        11.1 The Standard Singular Perturbation Model
        11.2 Time-Scale Properties of the Standard Model
        11.3 Singular Perturbation on the Infinite Interval
        11.4 Slow and Fast Manifolds
        11.5 Stability Analysis
        11.6 Exercises
    12 Feedback Control
        12.1 Control Problems
        12.2 Stabilization via Linearization
        12.3 Integral Control
        12.4 Integral Control via Linearization
        12.5 Gain Scheduling
        12.6 Exercises
    13 Feedback Linearization
        13.1 Motivation
        13.2 Input-Output Linearization
        13.3 Full-State Linearization
        13.4 State Feedback Control
              13.4.1 Stabilization
              13.4.2 Tracking
        13.5 Exercises
    14 Nonlinear Design Tools
        14.1 Sliding Mode Control
              14.1.1 Motivating Example
              14.1.2 Stabilization
              14.1.3 Tracking
              14.1.4 Regulation via Integral Control
        14.2 Lyapunov Redesign
              14.2.1 Stabilization
              14.2.2 Nonlinear Damping
        14.3 Backstepping
        14.4 Passivity-Based Control
        14.5 High-Gain Observers
              14.5.1 Motivating Example
              14.5.2 Stabilization
              14.5.3 Regulation via Integral Control
        14.6 Exercises
    A Mathematical Review
    B Contraction Mapping
    C Proofs
    Note and References
    Bibliography
    Symbols
    Index

    展开

    前     言

    Contents
    1  Introduction
        1.1  Nonlinear Models and Nonlinear Phenomena
        1.2  Examples
              1.2.1  Pendulum Equation
              1.2.2  Tunnel-Diode Circuit
              1.2.3  Mass-Spring System
              1.2.4  Negative-Resistance Oscillator
              1.2.5  Artificial Neural Network
              1.2.6  Adaptive Control
              1.2.7  Common Nonlinearities
        1.3  Exercises
    2   Second-Order Systems
        2.1  Qualitative Behavior of Linear Systems
        2.2  Multiple Equilibria
        2.3  Qualitative Behavior Near Equilibrium Points
        2.4  Limit Cycles
        2.5  Numerical Construction of Phase Portraits
        2.6  Existence of Periodic Orbits
        2.7  Bifurcation
        2.8  Exercises
    3 Fundamental Properties
        3.1  Existence and Uniqueness
        3.2  Continuous Dependence on Initial Conditions and Parameters
        3.3  Differentiability of Solutions and Sensitivity Equations
        3.4  Comparison Principle
        3.5  Exercises
    4   Lyapunov Stability
       4.1  Autonomous Systems
       4.2  The Invariance Principle
       4.3  Linear Systems and Linearization
       4.4  Comparison Functions
       4.5  Nonautonomous Systems
       4.6  Linear Time-Varying Systems and Linearization
       4.7  Converse Theorems
       4.8  Boundedness and Ultimate Boundedness
       4 9  Input-to-State Stability
       4.10 Exercises
    5   Input-Output Stability
        5.1  L Stability
        5.2  L1 Stability of State Models
        5.3  L2 Gain
        5.4  Feedback Systems: The Small-Gain Theorem
        5.5  Exercises
    6   Passivity
        6.1  Memoryless Functions
        6.2  State Models
        6.3  Positive Real Transfer Functions
        6.4  L2 and Lyapunov Stability
        6.5  Feedback Systems: Passivity Theorems
        6.6  Exercises
    7  Frequency Domain Analysis of Feedback Systems
        7.1  Absolute Stability
              7.1.1  Circle Criterion
              7.1.2  Popov Criterion
        7.2  The Describing Function Method
        7.3  Exercises
    8  Advanced Stability Analysis
        8.1  The Center Manifold Theorem
        8.2  Region of Attraction
        8.3  Invariance-like Theorems
        8.4  Stability of Periodic Solutions
        8.5  Exercises
    9  Stability of Perturbed Systems
       9.1  Vanishing Perturbation
        9.2  Nonvanishing Perturbation
        9.3  Comparison Method
       9.4  Continuity of Solutions on the Infinite Interval
        9.5  Interconnected Systems
        9.6  Slowly Varying Systems
        9.7  Exercises
    10 Perturbation Theory and Averaging
        10.1 The Perturbation Method
        10.2 Perturbation on the Infinite Interval
        10.3 Periodic Perturbation of Autonomous Systems
        10.4 Averaging
        10.5 Weakly Nonlinear Second-Order Oscillators
        10 6 General Averaging
        10.7 Exercises
    11 Singular Perturbations
        11.1 The Standard Singular Perturbation Model
        11.2 Time-Scale Properties of the Standard Model
        11.3 Singular Perturbation on the Infinite Interval
        11.4 Slow and Fast Manifolds
        11.5 Stability Analysis
        11.6 Exercises
    12 Feedback Control
        12.1 Control Problems
        12.2 Stabilization via Linearization
        12.3 Integral Control
        12.4 Integral Control via Linearization
        12.5 Gain Scheduling
        12.6 Exercises
    13 Feedback Linearization
        13.1 Motivation
        13.2 Input-Output Linearization
        13.3 Full-State Linearization
        13.4 State Feedback Control
              13.4.1 Stabilization
              13.4.2 Tracking
        13.5 Exercises
    14 Nonlinear Design Tools
        14.1 Sliding Mode Control
              14.1.1 Motivating Example
              14.1.2 Stabilization
              14.1.3 Tracking
              14.1.4 Regulation via Integral Control
        14.2 Lyapunov Redesign
              14.2.1 Stabilization
              14.2.2 Nonlinear Damping
        14.3 Backstepping
        14.4 Passivity-Based Control
        14.5 High-Gain Observers
              14.5.1 Motivating Example
              14.5.2 Stabilization
              14.5.3 Regulation via Integral Control
        14.6 Exercises
    A Mathematical Review
    B Contraction Mapping
    C Proofs
    Note and References
    Bibliography
    Symbols
    Index

    展开

    作者简介

    本书暂无作者简介
  • 样 章 试 读
  • 图 书 评 价 我要评论
华信教育资源网