华信教育资源网
计算机视觉——一种现代方法(第二版)(英文版)
丛   书   名: 国外计算机科学教材系列
作   译   者:David A. Forsyth,Jean Ponce 出 版 日 期:2017-06-01
出   版   社:电子工业出版社 维   护   人:冯小贝 
书   代   号:G0318260 I S B N:9787121318269

图书简介:

计算机视觉是研究如何使人工系统从图像或多维数据中"感知”的科学。本书是计算机视觉领域的经典教材,内容涉及几何摄像模型、光照及阴影、颜色、线性滤波、局部图像特征、纹理、立体视觉运动结构、聚类分割、组合与模型拟合、跟踪、配准、平滑表面与轮廓、深度数据、图像分类、对象检测与识别、基于图像的建模与渲染、人形研究、图像搜索与检索、优化技术等内容。与前一版相比,本书简化了部分主题,增加了应用示例,重写了关于现代特性的内容,详述了现代图像编辑技术与对象识别技术。
您的专属联系人更多
关注 评论(0) 分享
配套资源 图书内容 样章/电子教材 图书评价
  • 配 套 资 源
    图书特别说明:由于成本考虑,本书不作为参考书赠送。如果确有授课教材选用的需求,可将详细情况发送给本书专属联系人,我们将进一步沟通并酌情处理。

    本书资源

    会员上传本书资源

  • 图 书 内 容

    内容简介

    计算机视觉是研究如何使人工系统从图像或多维数据中"感知”的科学。本书是计算机视觉领域的经典教材,内容涉及几何摄像模型、光照及阴影、颜色、线性滤波、局部图像特征、纹理、立体视觉运动结构、聚类分割、组合与模型拟合、跟踪、配准、平滑表面与轮廓、深度数据、图像分类、对象检测与识别、基于图像的建模与渲染、人形研究、图像搜索与检索、优化技术等内容。与前一版相比,本书简化了部分主题,增加了应用示例,重写了关于现代特性的内容,详述了现代图像编辑技术与对象识别技术。

    图书详情

    ISBN:9787121318269
    开 本:16开
    页 数:732
    字 数:1370.0

    本书目录

    i image formation 1 
    1 geometric camera models 3 
    1.1 image formation 4 
    1.1.1 pinhole perspective 4 
    1.1.2 weak perspective 6 
    1.1.3 cameras with lenses 8 
    1.1.4 the human eye 12 
    1.2 intrinsic and extrinsic parameters 14 
    1.2.1 rigid transformations and homogeneous coordinates 14 
    1.2.2 intrinsic parameters 16 
    1.2.3 extrinsic parameters 18 
    1.2.4 perspective projection matrices 19 
    1.2.5 weak-perspective projection matrices 20 
    1.3 geometric camera calibration 22 
    1.3.1 alinear approach to camera calibration 23 
    1.3.2 anonlinear approach to camera calibration 27 
    1.4 notes 29 
    2 light and shading 32 
    2.1 modelling pixel brightness 32 
    2.1.1 reflection at surfaces 33 
    2.1.2 sources and their effects 34 
    2.1.3 the lambertian+specular model 36 
    2.1.4 area sources 36 
    2.2 inference from shading 37 
    2.2.1 radiometric calibration and high dynamic range images 38 
    2.2.2 the shape of specularities 40 
    2.2.3 inferring lightness and illumination 43 
    2.2.4 photometric stereo: shape from multiple shaded images 46 
    2.3 modelling interreflection 52 
    2.3.1 the illumination at a patch due to an area source 52 
    2.3.2 radiosity and exitance 54 
    2.3.3 an interreflection model 55 
    2.3.4 qualitative properties of interreflections 56 
    2.4 shape from one shaded image 59 
    2.5 notes 61 
    3 color 68 
    3.1 human color perception 68 
    3.1.1 color matching 68 
    3.1.2 color receptors 71 
    3.2 the physics of color 73 
    3.2.1 the color of light sources 73 
    3.2.2 the color of surfaces 76 
    3.3 representing color 77 
    3.3.1 linear color spaces 77 
    3.3.2 non-linear color spaces 83 
    3.4 amodel of image color 86 
    3.4.1 the diffuse term 88 
    3.4.2 the specular term 90 
    3.5 inference from color 90 
    3.5.1 finding specularities using color 90 
    3.5.2 shadow removal using color 92 
    3.5.3 color constancy: surface color from image color 95 
    3.6 notes 99 
    ii early vision: just one image 105 
    4 linear filters 107 
    4.1 linear filters and convolution 107 
    4.1.1 convolution 107 
    4.2 shift invariant linear systems 112 
    4.2.1 discrete convolution 113 
    4.2.2 continuous convolution 115 
    4.2.3 edge effects in discrete convolutions 118 
    4.3 spatial frequency and fourier transforms 118 
    4.3.1 fourier transforms 119 
    4.4 sampling and aliasing 121 
    4.4.1 sampling 122 
    4.4.2 aliasing 125 
    4.4.3 smoothing and resampling 126 
    4.5 filters as templates 131 
    4.5.1 convolution as a dot product 131 
    4.5.2 changing basis 132 
    4.6 technique: normalized correlation and finding patterns 132 
    4.6.1 controlling the television by finding hands by normalized 
    correlation 133 
    4.7 technique: scale and image pyramids 134 
    4.7.1 the gaussian pyramid 135 
    4.7.2 applications of scaled representations 136 
    4.8 notes 137 
    5 local image features 141 
    5.1 computing the image gradient 141 
    5.1.1 derivative of gaussian filters 142 
    5.2 representing the image gradient 144 
    5.2.1 gradient-based edge detectors 145 
    5.2.2 orientations 147 
    5.3 finding corners and building neighborhoods 148 
    5.3.1 finding corners 149 
    5.3.2 using scale and orientation to build a neighborhood 151 
    5.4 describing neighborhoods with sift and hog features 155 
    5.4.1 sift features 157 
    5.4.2 hog features 159 
    5.5 computing local features in practice 160 
    5.6 notes 160 
    6 texture 164 
    6.1 local texture representations using filters 166 
    6.1.1 spots and bars 167 
    6.1.2 from filter outputs to texture representation 168 
    6.1.3 local texture representations in practice 170 
    6.2 pooled texture representations by discovering textons 171 
    6.2.1 vector quantization and textons 172 
    6.2.2 k-means clustering for vector quantization 172 
    6.3 synthesizing textures and filling holes in images 176 
    6.3.1 synthesis by sampling local models 176 
    6.3.2 filling in holes in images 179 
    6.4 image denoising 182 
    6.4.1 non-local means 183 
    6.4.2 block matching 3d (bm3d) 183 
    6.4.3 learned sparse coding 184 
    6.4.4 results 186 
    6.5 shape from texture 187 
    6.5.1 shape from texture for planes 187 
    6.5.2 shape from texture for curved surfaces 190 
    6.6 notes 191 
    iii early vision: multiple images 195 
    7 stereopsis 197 
    7.1 binocular camera geometry and the epipolar constraint 198 
    7.1.1 epipolar geometry 198 
    7.1.2 the essential matrix 200 
    7.1.3 the fundamental matrix 201 
    7.2 binocular reconstruction 201 
    7.2.1 image rectification 202 
    7.3 human stereopsis 203 
    7.4 local methods for binocular fusion 205 
    7.4.1 correlation 205 
    7.4.2 multi-scale edge matching 207 
    7.5 global methods for binocular fusion 210 
    7.5.1 ordering constraints and dynamic programming 210 
    7.5.2 smoothness and graphs 211 
    7.6 using more cameras 214 
    7.7 application: robot navigation 215 
    7.8 notes 216 
    8 structure from motion 221 
    8.1 internally calibrated perspective cameras 221 
    8.1.1 natural ambiguity of the problem 223 
    8.1.2 euclidean structure and motion from two images 224 
    8.1.3 euclidean structure and motion from multiple images 228 
    8.2 uncalibrated weak-perspective cameras 230 
    8.2.1 natural ambiguity of the problem 231 
    8.2.2 affine structure and motion from two images 233 
    8.2.3 affine structure and motion from multiple images 237 
    8.2.4 from affine to euclidean shape 238 
    8.3 uncalibrated perspective cameras 240 
    8.3.1 natural ambiguity of the problem 241 
    8.3.2 projective structure and motion from two images 242 
    8.3.3 projective structure and motion from multiple images 244 
    8.3.4 from projective to euclidean shape 246 
    8.4 notes 248 
    iv mid-level vision 253 
    9 segmentation by clustering 255 
    9.1 human vision: grouping and gestalt 256 
    9.2 important applications 261 
    9.2.1 background subtraction 261 
    9.2.2 shot boundary detection 264 
    9.2.3 interactive segmentation 265 
    9.2.4 forming image regions 266 
    9.3 image segmentation by clustering pixels 268 
    9.3.1 basic clustering methods 269 
    9.3.2 the watershed algorithm 271 
    9.3.3 segmentation using k-means 272 
    9.3.4 mean shift: finding local modes in data 273 
    9.3.5 clustering and segmentation with mean shift 275 
    9.4 segmentation, clustering, and graphs 277 
    9.4.1 terminology and facts for graphs 277 
    9.4.2 agglomerative clustering with a graph 279 
    9.4.3 divisive clustering with a graph 281 
    9.4.4 normalized cuts 284 
    9.5 image segmentation in practice 285 
    9.5.1 evaluating segmenters 286 
    9.6 notes 287 
    10 grouping and model fitting 290 
    10.1 the hough transform 290 
    10.1.1 fitting lines with the hough transform 290 
    10.1.2 using the hough transform 292 
    10.2 fitting lines and planes 293 
    10.2.1 fitting a single line 294 
    10.2.2 fitting planes 295 
    10.2.3 fitting multiple lines 296 
    10.3 fitting curved structures 297 
    10.4 robustness 299 
    10.4.1 m-estimators 300 
    10.4.2 ransac: searching for good points 302 
    10.5 fitting using probabilistic models 306 
    10.5.1 missing data problems 307 
    10.5.2 mixture models and hidden variables 309 
    10.5.3 the em algorithm for mixture models 310 
    10.5.4 difficulties with the em algorithm 312 
    10.6 motion segmentation by parameter estimation 313 
    10.6.1 optical flow and motion 315 
    10.6.2 flow models 316 
    10.6.3 motion segmentation with layers 317 
    10.7 model selection: which model is the best fit? 319 
    10.7.1 model selection using cross-validation 322 
    10.8 notes 322 
    11 tracking 326 
    11.1 simple tracking strategies 327 
    11.1.1 tracking by detection 327 
    11.1.2 tracking translations by matching 330 
    11.1.3 using affine transformations to confirm a match 332 
    11.2 tracking using matching 334 
    11.2.1 matching summary representations 335 
    11.2.2 tracking using flow 337 
    11.3 tracking linear dynamical models with kalman filters 339 
    11.3.1 linear measurements and linear dynamics 340 
    11.3.2 the kalman filter 344 
    11.3.3 forward-backward smoothing 345 
    11.4 data association 349 
    11.4.1 linking kalman filters with detection methods 349 
    11.4.2 key methods of data association 350 
    11.5 particle filtering 350 
    11.5.1 sampled representations of probability distributions 351 
    11.5.2 the simplest particle filter 355 
    11.5.3 the tracking algorithm 356 
    11.5.4 a workable particle filter 358 
    11.5.5 practical issues in particle filters 360 
    11.6 notes 362 
    v high-level vision 365 
    12 registration 367 
    12.1 registering rigid objects 368 
    12.1.1 iterated closest points 368 
    12.1.2 searching for transformations via correspondences 369 
    12.1.3 application: building image mosaics 370 
    12.2 model-based vision: registering rigid objects with projection 375 
    12.2.1 verification: comparing transformed and rendered source 
    to target 377 
    12.3 registering deformable objects 378 
    12.3.1 deforming texture with active appearance models 378 
    12.3.2 active appearance models in practice 381 
    12.3.3 application: registration in medical imaging systems 383 
    12.4 notes 388 
    13 smooth surfaces and their outlines 391 
    13.1 elements of differential geometry 393 
    13.1.1 curves 393 
    13.1.2 surfaces 397 
    13.2 contour geometry 402 
    13.2.1 the occluding contour and the image contour 402 
    13.2.2 the cusps and inflections of the image contour 403 
    13.2.3 koenderink’s theorem 404 
    13.3 visual events: more differential geometry 407 
    13.3.1 the geometry of the gauss map 407 
    13.3.2 asymptotic curves 409 
    13.3.3 the asymptotic spherical map 410 
    13.3.4 local visual events 412 
    13.3.5 the bitangent ray manifold 413 
    13.3.6 multilocal visual events 414 
    13.3.7 the aspect graph 416 
    13.4 notes 417 
    14 range data 422 
    14.1 active range sensors 422 
    14.2 range data segmentation 424 
    14.2.1 elements of analytical differential geometry 424 
    14.2.2 finding step and roof edges in range images 426 
    14.2.3 segmenting range images into planar regions 431 
    14.3 range image registration and model acquisition 432 
    14.3.1 quaternions 433 
    14.3.2 registering range images 434 
    14.3.3 fusing multiple range images 436 
    14.4 object recognition 438 
    14.4.1 matching using interpretation trees 438 
    14.4.2 matching free-form surfaces using spin images 441 
    14.5 kinect 446 
    14.5.1 features 447 
    14.5.2 technique: decision trees and random forests 448 
    14.5.3 labeling pixels 450 
    14.5.4 computing joint positions 453 
    14.6 notes 453 
    15 learning to classify 457 
    15.1 classification, error, and loss 457 
    15.1.1 using loss to determine decisions 457 
    15.1.2 training error, test error, and overfitting 459 
    15.1.3 regularization 460 
    15.1.4 error rate and cross-validation 463 
    15.1.5 receiver operating curves 465 
    15.2 major classification strategies 467 
    15.2.1 example: mahalanobis distance 467 
    15.2.2 example: class-conditional histograms and naive bayes 468 
    15.2.3 example: classification using nearest neighbors 469 
    15.2.4 example: the linear support vector machine 470 
    15.2.5 example: kernel machines 473 
    15.2.6 example: boosting and adaboost 475 
    15.3 practical methods for building classifiers 475 
    15.3.1 manipulating training data to improve performance 477 
    15.3.2 building multi-class classifiers out of binary classifiers 479 
    15.3.3 solving for svms and kernel machines 480 
    15.4 notes 481 
    16 classifying images 482 
    16.1 building good image features 482 
    16.1.1 example applications 482 
    16.1.2 encoding layout with gist features 485 
    16.1.3 summarizing images with visual words 487 
    16.1.4 the spatial pyramid kernel 489 
    16.1.5 dimension reduction with principal components 493 
    16.1.6 dimension reduction with canonical variates 494 
    16.1.7 example application: identifying explicit images 498 
    16.1.8 example application: classifying materials 502 
    16.1.9 example application: classifying scenes 502 
    16.2 classifying images of single objects 504 
    16.2.1 image classification strategies 505 
    16.2.2 evaluating image classification systems 505 
    16.2.3 fixed sets of classes 508 
    16.2.4 large numbers of classes 509 
    16.2.5 flowers, leaves, and birds: some specialized problems 511 
    16.3 image classification in practice 512 
    16.3.1 codes for image features 513 
    16.3.2 image classification datasets 513 
    16.3.3 dataset bias 515 
    16.3.4 crowdsourcing dataset collection 515 
    16.4 notes 517 
    17 detecting objects in images 519 
    17.1 the sliding window method 519 
    17.1.1 face detection 520 
    17.1.2 detecting humans 525 
    17.1.3 detecting boundaries 527 
    17.2 detecting deformable objects 530 
    17.3 the state of the art of object detection 535 
    17.3.1 datasets and resources 538 
    17.4 notes 539 
    18 topics in object recognition 540 
    18.1 what should object recognition do? 540 
    18.1.1 what should an object recognition system do? 540 
    18.1.2 current strategies for object recognition 542 
    18.1.3 what is categorization? 542 
    18.1.4 selection: what should be described? 544 
    18.2 feature questions 544 
    18.2.1 improving current image features 544 
    18.2.2 other kinds of image feature 546 
    18.3 geometric questions 547 
    18.4 semantic questions 549 
    18.4.1 attributes and the unfamiliar 550 
    18.4.2 parts, poselets and consistency 551 
    18.4.3 chunks of meaning 554 
    vi applications and topics 557 
    19 image-based modeling and rendering 559 
    19.1 visual hulls 559 
    19.1.1 main elements of the visual hull model 561 
    19.1.2 tracing intersection curves 563 
    19.1.3 clipping intersection curves 566 
    19.1.4 triangulating cone strips 567 
    19.1.5 results 568 
    19.1.6 going further: carved visual hulls 572 
    19.2 patch-based multi-view stereopsis 573 
    19.2.1 main elements of the pmvs model 575 
    19.2.2 initial feature matching 578 
    19.2.3 expansion 579 
    19.2.4 filtering 580 
    19.2.5 results 581 
    19.3 the light field 584 
    19.4 notes 587 
    20 looking at people 590 
    20.1 hmm’s, dynamic programming, and tree-structured models 590 
    20.1.1 hidden markov models 590 
    20.1.2 inference for an hmm 592 
    20.1.3 fitting an hmm with em 597 
    20.1.4 tree-structured energy models 600 
    20.2 parsing people in images 602 
    20.2.1 parsing with pictorial structure models 602 
    20.2.2 estimating the appearance of clothing 604 
    20.3 tracking people 606 
    20.3.1 why human tracking is hard 606 
    20.3.2 kinematic tracking by appearance 608 
    20.3.3 kinematic human tracking using templates 609 
    20.4 3d from 2d: lifting 611 
    20.4.1 reconstruction in an orthographic view 611 
    20.4.2 exploiting appearance for unambiguous reconstructions 613 
    20.4.3 exploiting motion for unambiguous reconstructions 615 
    20.5 activity recognition 617 
    20.5.1 background: human motion data 617 
    20.5.2 body configuration and activity recognition 621 
    20.5.3 recognizing human activities with appearance features 622 
    20.5.4 recognizing human activities with compositional models 624 
    20.6 resources 624 
    20.7 notes 626 
    21 image search and retrieval 627 
    21.1 the application context 627 
    21.1.1 applications 628 
    21.1.2 user needs 629 
    21.1.3 types of image query 630 
    21.1.4 what users do with image collections 631 
    21.2 basic technologies from information retrieval 632 
    21.2.1 word counts 632 
    21.2.2 smoothing word counts 633 
    21.2.3 approximate nearest neighbors and hashing 634 
    21.2.4 ranking documents 638 
    21.3 images as documents 639 
    21.3.1 matching without quantization 640 
    21.3.2 ranking image search results 641 
    21.3.3 browsing and layout 643 
    21.3.4 laying out images for browsing 644 
    21.4 predicting annotations for pictures 645 
    21.4.1 annotations from nearby words 646 
    21.4.2 annotations from the whole image 646 
    21.4.3 predicting correlated words with classifiers 648 
    21.4.4 names and faces 649 
    21.4.5 generating tags with segments 651 
    21.5 the state of the art of word prediction 654 
    21.5.1 resources 655 
    21.5.2 comparing methods 655 
    21.5.3 open problems 656 
    21.6 notes 659 
    vii background material 661 
    22 optimization techniques 663 
    22.1 linear least-squares methods 663 
    22.1.1 normal equations and the pseudoinverse 664 
    22.1.2 homogeneous systems and eigenvalue problems 665 
    22.1.3 generalized eigenvalues problems 666 
    22.1.4 an example: fitting a line to points in a plane 666 
    22.1.5 singular value decomposition 667 
    22.2 nonlinear least-squares methods 669 
    22.2.1 newton’s method: square systems of nonlinear equations670 
    22.2.2 newton’s method for overconstrained systems 670 
    22.2.3 the gauss—newton and levenberg—marquardt algorithms 671 
    22.3 sparse coding and dictionary learning 672 
    22.3.1 sparse coding 672 
    22.3.2 dictionary learning 673 
    22.3.3 supervised dictionary learning 675 
    22.4 min-cut/max-flow problems and combinatorial optimization 675 
    22.4.1 min-cut problems 676 
    22.4.2 quadratic pseudo-boolean functions 677 
    22.4.3 generalization to integer variables 679 
    22.5 notes 682 
    
    index  684
    list of algorithms 707
    展开

    前     言

    需要替换替换替换
    
    计算机视觉是研究如何使人工系统从图像或多维数据中"感知”的科学。本书是计算机视觉领域的经典教材,内容涉及几何摄像模型、光照及阴影、颜色、线性滤波、局部图像特征、纹理、立体视觉运动结构、聚类分割、组合与模型拟合、跟踪、配准、平滑表面与轮廓、深度数据、图像分类、对象检测与识别、基于图像的建模与渲染、人形研究、图像搜索与检索、优化技术等内容。与前一版相比,本书简化了部分主题,增加了应用示例,重写了关于现代特性的内容,详述了现代图像编辑技术与对象识别技术。
    展开

    作者简介

    本书暂无作者简介
  • 样 章 试 读
  • 图 书 评 价 我要评论
华信教育资源网