华信教育资源网
芯片制造——半导体工艺制程实用教程(第六版)(英文版)
丛   书   名: 国外电子与通信教材系列
作   译   者:Peter Van Zant(彼得·范·赞特) 出 版 日 期:2014-11-01
出   版   社:电子工业出版社 维   护   人:杨博 
书   代   号:G0243781 I S B N:9787121243783

图书简介:

本书是一本介绍半导体集成电路和器件制造技术的专业书籍,在半导体领域享有很高的声誉。本书的范围包括半导体工艺的每个阶段:从原材料的制备到封装、测试和成品运输,以及传统的和现代的工艺。全书提供了详细的插图和实例,每章包含回顾总结和习题,并辅以丰富的术语表。第六版修订了微芯片制造领域的新进展,讨论了用于图形化、掺杂和薄膜步骤的先进工艺和尖端技术,使隐含在复杂的现代半导体制造材料和工艺中的物理、化学和电子的基础知识更易理解。本书的主要特点是避开了复杂的数学问题介绍工艺技术内容;加入了半导体业界的新成果,可以使读者了解工艺技术发展的趋势。
定价 99.0
您的专属联系人更多
关注 评论(2) 分享
配套资源 图书内容 样章/电子教材 图书评价
  • 配 套 资 源

    本书资源

    本书暂无资源

    会员上传本书资源

  • 图 书 内 容

    内容简介

    本书是一本介绍半导体集成电路和器件制造技术的专业书籍,在半导体领域享有很高的声誉。本书的范围包括半导体工艺的每个阶段:从原材料的制备到封装、测试和成品运输,以及传统的和现代的工艺。全书提供了详细的插图和实例,每章包含回顾总结和习题,并辅以丰富的术语表。第六版修订了微芯片制造领域的新进展,讨论了用于图形化、掺杂和薄膜步骤的先进工艺和尖端技术,使隐含在复杂的现代半导体制造材料和工艺中的物理、化学和电子的基础知识更易理解。本书的主要特点是避开了复杂的数学问题介绍工艺技术内容;加入了半导体业界的新成果,可以使读者了解工艺技术发展的趋势。

    图书详情

    ISBN:9787121243783
    开 本:16开
    页 数:568
    字 数:1026

    本书目录

    Contents
    1 The Semiconductor Industry 1
    Introduction 1
    Birth of an Industry 1
    The Solid-State Era 3
    Integrated Circuits (ICs) 4
    Process and Product Trends 5
    Moore’s Law 6
    Decreasing Feature Size 6
    Increasing Chip and Wafer Size 8
    Reduction in Defect Density 9
    Increase in Interconnection Levels  10
    The Semiconductor Industry Association Roadmap  10
    Chip Cost  11
    Industry Organization  11
    Stages of Manufacturing  12
    Six Decades of Advances in Microchip Fabrication Processes  14
    The Nano Era  16
    Review Topics  17
    References  17
    2 Properties of Semiconductor Materials and Chemicals 19
    Introduction  19
    Atomic Structure  19
    The Bohr Atom  19
    The Periodic Table of the Elements  20
    Electrical Conduction  23
    Conductors  23
    Dielectrics and Capacitors  23
    Resistors  24
    Intrinsic Semiconductors  24
    Doped Semiconductors  25
    Electron and Hole Conduction  26
    Carrier Mobility  28
    Semiconductor Production Materials  29
    Germanium and Silicon  29
    Semiconducting Compounds  29
    Silicon Germanium  31
    Engineered Substrates  31
    Ferroelectric Materials  31
    Diamond Semiconductors  32
    Process Chemicals  32
    Molecules, Compounds, and Mixtures  32
    Ions  33
    States of Matter  34
    Solids, Liquids, and Gases  34
    Plasma State  34
    Properties of Matter  34
    Temperature  34
    Density, Specic Gravity, and Vapor Density  35
    Pressure and Vacuum  36
    Acids, Alkalis, and Solvents  37
    Acids and Alkalis  37
    Solvents  38
    Chemical Purity and Cleanliness  38
    Safety Issues  38
    The Material Safety Data Sheet  39
    Review Topics  39
    References  39
    3 Crystal Growth and Silicon Wafer Preparation  41
    Introduction  41
    Semiconductor Silicon Preparation  41
    Silicon Wafer Preparation Stages  42
    Crystalline Materials  42
    Unit Cells  43
    Poly and Single Crystals  43
    Crystal Orientation  44
    Crystal Growth  45
    Czochralski Method  45
    Liquid-Encapsulated Czochralski  47
    Float Zone  47
    Crystal and Wafer Quality  49
    Point Defects  49
    Dislocations  50
    Growth Defects  50
    Wafer Preparation  51
    End Cropping  51
    Diameter Grinding  51
    Crystal Orientation, Conductivity, and Resistivity Check  51
    Grinding Orientation Indicators  52
    Wafer Slicing  53
    Wafer Marking  54
    Rough Polish  54
    Chemical Mechanical Polishing  55
    Backside Processing  55
    Double-Sided Polishing  56
    Edge Grinding and Polishing  56
    Wafer Evaluation  56
    Oxidation  57
    Packaging  57
    Wafer Types and Uses  57
    Reclaim Wafers  57
    Engineered Wafers (Substrates)  57
    Review Topics  58
    References  58
    4 Overview of Wafer Fabrication and Packaging  59
    Introduction  59
    Goal of Wafer Fabrication  59
    Wafer Terminology  59
    Chip Terminology  61
    Basic Wafer-Fabrication Operations  63
    Layering  63
    Patterning  64
    Circuit Design  66
    Reticle and Masks  68
    Doping  69
    Heat Treatments  69
    Example Fabrication Process  72
    Wafer Sort  74
    Packaging  75
    Summary  75
    Review Topics  76
    References  76
    5 Contamination Control  77
    Introduction  77
    The Problem  77
    Contamination-Caused Problems  80
    Contamination Sources  81
    General Sources  81
    Air  81
    Clean Air Strategies  82
    Cleanroom Workstation Strategy  83
    Tunnel or Bay Concept  85
    Micro- and Mini-Environments  86
    Temperature, Humidity, and Smog  87
    Cleanroom Construction  88
    Construction Materials  88
    Cleanroom Elements  89
    Personnel-Generated Contamination  93
    Process Water  94
    Process Chemicals  96
    Equipment  99
    Cleanroom Materials and Supplies  99
    Cleanroom Maintenance  100
    Wafer-Surface Cleaning  100
    Particulate Removal  102
    Wafer Scrubbers  102
    High-Pressure Water Cleaning  103
    Organic Residues  103
    Inorganic Residues  103
    Chemical-Cleaning Solutions  104
    General Chemical Cleaning  104
    Oxide Layer Removal  105
    Room Temperature and Ozonated Chemistries  106
    Water Rinsing  108
    Drying Techniques  110
    Contamination Detection  112
    Review Topics  112
    References  113
    6 Productivity and Process Yields  115
    Overview  115
    Yield Measurement Points  115
    Accumulative Wafer-Fabrication Yield  116
    Wafer-Fabrication Yield Limiters  117
    Number of Process Steps  118
    Wafer Breakage and Warping  118
    Process Variation  119
    Mask Defects  120
    Wafer-Sort Yield Factors  120
    Wafer Diameter and Edge Die  121
    Wafer Diameter and Die Size  122
    Wafer Diameter and Crystal Defects  122
    Wafer Diameter and Process Variations  123
    Die Area and Defect Density  124
    Circuit Density and Defect Density  125
    Number of Process Steps  125
    Feature Size and Defect Size  125
    Process Cycle Time  125
    Wafer-Sort Yield Formulas  125
    Assembly and Final Test Yields  128
    Overall Process Yields  128
    Review Topics  129
    References  130
    7 Oxidation  131
    Introduction  131
    Silicon Dioxide Layer Uses  131
    Surface Passivation  131
    Doping Barrier  132
    Surface Dielectric  132
    Device Dielectric (MOS Gates)  133
    Device Oxide Thicknesses  134
    Thermal Oxidation Mechanisms    134
    Influences on the Oxidation Rate 137
    Thermal Oxidation Methods 140
    Horizontal Tube Furnaces 140
    Temperature Control System 141
    Source Cabinet 143
    Vertical Tube Furnaces 143
    Rapid Thermal Processing 146
    High-Pressure Oxidation 149
    Oxidant Sources 151
    Oxidation Processes  154
    Preoxidation Wafer Cleaning    154
    Postoxidation Evaluation 155
    Surface Inspection 156
    Oxide Thickness 156
    Oxide and Furnace Cleanliness  156
    Thermal Nitridation  156
    Review Topics 157
    References 157
    8 The Ten-Step Patterning Process—Surface Preparation to Exposure 161
    Introduction 161
    Overview of the Photomasking Process  162
    Ten-Step Process 165
    Basic Photoresist Chemistry 167
    Photoresist 167
    Photoresist Performance Factors 169
    Resolution Capability 169
    Adhesion Capability  170
    Process Latitude 171
    Pinholes   172
    Particle and Contamination Levels 173
    Step Coverage 173
    Thermal Flow 173
    Comparison of Positive and Negative Resists 173
    Physical Properties of Photoresists 175
    Solids Content 175
    Viscosity  175
    Surface Tension 176
    Index of Refraction  176
    Storage and Control of Photoresists 176
    Light and Heat Sensitivity 176
    Viscosity Sensitivity 177
    Shelf Life 177
    Cleanliness 177
    Photomasking Processes—Surface Preparation to Exposure 178
    Surface Preparation  178
    Particle Removal 178
    Dehydration Baking  178
    Wafer Priming 179
    Spin Priming 180
    Vapor Priming 180
    Photoresist Application (Spinning) 181
    The Static Dispense Spin Process 181
    Dynamic Dispense 183
    Moving-Arm Dispensing 183
    Manual Spinners 183
    Automatic Spinners   184
    Edge Bead Removal 185
    Backside Coating 185
    Soft Bake  185
    Convection Ovens 186
    Manual Hot Plates 187
    In-Line, Single-Wafer Hot Plates 187
    Moving-Belt Hot Plates 187
    Moving-Belt Infrared Ovens 188
    Microwave Baking 188
    Vacuum Baking 188
    Alignment and Exposure 189
    Alignment and Exposure Systems 189
    Exposure Sources 191
    Alignment Criteria 191
    Aligner Types 193
    Postexposure Bake 196
    Advanced Lithography 198
    Review Topics 198
    References 198
    9 The Ten-Step Patterning Process—Developing to Final Inspection  201
    Introduction 201
    Development 201
    Positive Resist Development 201
    Negative Resist Development 203
    Wet Development Processes 203
    Dry (or Plasma) Development 206
    Hard Bake  207
    Hard-Bake Methods 207
    Hard-Bake Process 207
    Develop Inspect 208
    Develop Inspect Reject Categories 209
    Develop Inspect Methods 209
    Causes for Rejecting at the Develop Inspection Stage 211
    Etch 212
    Wet Etching 212
    Etch Goals and Issues 212
    Incomplete Etch 212
    Overetch and Undercutting 213
    Selectivity 214
    Wet-Spray Etching 214
    Silicon Wet Etching  214
    Silicon Dioxide Wet Etching 215
    Aluminum-Film Wet Etching 216
    Deposited-Oxide Wet Etching  216
    Silicon Nitride Wet Etching 216
    Vapor Etching 217
    Dry Etch 217
    Plasma Etching 218
    Etch Rate  220
    Radiation Damage 220
    Selectivity 220
    Ion-Beam Etching 222
    Reactive Ion Etching 222
    Resist Effects in Dry Etching  223
    Resist Stripping 223
    Wet Chemical Stripping of Nonmetallized Surfaces   224
    Wet Chemical Stripping of Metallized Surfaces 225
    Dry Stripping 225
    Post–Ion Implant and Plasma Etch Stripping 226
    New Stripping Challenges 226
    Final Inspection 227
    Mask Making 227
    Summary 229
    Review Topics 229
    References 230
    10 Next Generation Lithography 233
    Introduction 233
    Challenges of Next Generation Lithography 233
    High-Pressure Mercury Lamp Sources 235
    Excimer Lasers 236
    Extreme Ultraviolet  236
    X-Rays 237
    Electron Beam or Direct Writing 238
    Numerical Aperture of a Lens   240
    Other Exposure Issues 241
    Variable Numerical Aperture Lenses 242
    Immersion Exposure System 242
    Amplified Resist 242
    Contrast Effects 243
    Other Resolution Challenges and Solutions 244
    Off-Axis Illumination 245
    Lens Issues and Reection Systems 245
    Phase-Shift Masks 245
    Optical Proximity Corrected or Optical Process Correction 245
    Annular-Ring Illumination  246
    Pellicles  247
    Surface Problems  248
    Resist Light Scattering  248
    Subsurface Reectivity  248
    Antireective Coatings  249
    Standing Waves  249
    Planarization  251
    Photoresist Process Advances  252
    Multilayer Resist or Surface Imaging  252
    Silylation or DESIRE Process  254
    Polyimide Planarization Layers  255
    Etchback Planarization  256
    Dual-Damascene Process  256
    Chemical Mechanical Polishing  256
    Slurry  259
    Polishing Rates  259
    Planarity  260
    Post-CMP Clean  261
    CMP Tools  261
    CMP Summary  262
    Reow  262
    Image Reversal  262
    Contrast Enhancement Layers  262
    Dyed Resists  264
    Improving Etch Denition  264
    Lift-Off Process  264
    Self-Aligned Structures  264
    Etch Prole Control  266
    Review Topics  266
    References  266
    11    Doping  269
    Introduction  269
    The Diffusion Concept  269
    Formation of a Doped Region and Junction  271
    The N-P Junction  272
    Doping Process Goals  273
    Graphical Representation of Junctions  273
    Concentration versus Depth Graphs  273
    Lateral Diffusion  273
    Same-Type Doping  275
    Diffusion Process Steps  275
    Deposition  275
    Dopant Sources  278
    Drive-In Oxidation  280
    Oxidation Effects  281
    Introduction to Ion Implantation  281
    Concept of Ion Implantation    283
    Ion-Implantation System 284
    Implant Species Sources 284
    Ionization Chamber   284
    Mass Analyzing or Ion Selection 284
    Acceleration Tube 286
    Wafer Charging 286
    Beam Focus 287
    Neutral Beam Trap 287
    Beam Scanning 287
    End Station and Target Chamber 289
    Ion-Implant Masks 290
    Dopant Concentration in Implanted Regions 291
    Crystal Damage 292
    Annealing and Dopant Activation 292
    Channeling 293
    Evaluation of Implanted Layers 294
    Uses of Ion Implantation  295
    The Future of Doping 297
    Review Topics 297
    References 298
    12 Layer Deposition 299
    Introduction 299
    Film Parameters 301
    Chemical Vapor Deposition Basics 302
    Basic CVD System Components 303
    CVD Process Steps 305
    CVD System Types 305
    Atmospheric-Pressure CVD Systems 306
    Horizontal-Tube Induction-Heated APCVD 306
    Barrel Radiant-Induction-Heated APCVD 307
    Pancake Induction-Heated APCVD 307
    Continuous Conduction-Heated APCVD 308
    Horizontal Conduction-Heated APCVD 309
    Low-Pressure Chemical Vapor Deposition 309
    Horizontal Conduction-Convection-Heated LPCVD 309
    Ultra-High Vacuum CVD 310
    Plasma-Enhanced CVD (PECVD) 310
    High-Density Plasma CVD 312
    Atomic Layer Deposition 313
    Vapor-Phase Epitaxy  315
    Molecular Beam Epitaxy 315
    Metalorganic CVD 317
    Deposited Films 318
    Deposited Semiconductors 318
    Epitaxial Silicon 318
    Polysilicon and Amorphous Silicon Deposition 324
    SOS and SOI 325
    Gallium Arsenide on Silicon 326
    Insulators and Dielectrics 326
    Silicon Dioxide 326
    Doped Silicon Dioxide 327
    Silicon Nitride 328
    High-k and Low-k Dielectrics 329
    Conductors 329
    Review Topics 329
    References 330
    13 Metallization 333
    Introduction 333
    Deposition Methods 333
    Single-Layer Metal Systems 334
    Multilevel Metal Schemes 335
    Conductors Materials 336
    Aluminum 336
    Aluminum-Silicon Alloys 336
    Aluminum-Copper Alloy 337
    Barrier Metals 338
    Refractory Metals and Refractory Metal Silicides 338
    Plugs 339
    Sputter Deposition 340
    Copper Dual-Damascene Process  345
    Low-k Dielectric Materials 345
    The Dual-Damascene Copper Process 346
    Barrier or Liner Deposition 348
    Seed Deposition 348
    Electrochemical Plating 348
    Chemical-Mechanical Processing 349
    CVD Metal Deposition 349
    Doped Polysilicon 349
    CVD Refractory Deposition 350
    Metal-Film Uses 351
    MOS Gate and Capacitor Electrodes 351
    Backside Metallization 351
    Vacuum Systems 351
    Dry Mechanical Pumps 352
    Turbomolecular Hi-Vac Pumps 352
    Review Topics 353
    References 353
    14 Process and Device Evaluation 355
    Introduction 355
    Wafer Electrical Measurements  356
    Resistance and Resistivity 356
    Resistivity Measurements 356
    Four-Point Probe  356
    Process and Device Evaluation  358
    Sheet Resistance  358
    Four-Point Probe Thickness Measurement  358
    Concentration or Depth Prole  359
    Secondary Ion Mass Spectrometry  359
    Optically Modulated Optical Reflection (Thermawave)  360
    Physical Measurement Methods  360
    Layer Thickness Measurements  360
    Color  360
    Spectrophotometers or Reectometry  361
    Ellipsometers  363
    Stylus (Surface Prolometers)  363
    Photoacoustic  365
    Four-Point Probe  365
    Ultra-Thin MOSFET Gate Thickness  365
    Gate Oxide Integrity Electrical Measurement  365
    Junction Depth  365
    Groove and Stain  365
    Scanning Electron Microscope Thickness Measurement  367
    Spreading Resistance Probe  367
    Secondary Ion Mass Spectrometry  367
    Scanning Capacitance Microscopy  368
    Scanning Electron Microscope Thickness Measurement  368
    Critical Dimensions and Line-Width Measurements  369
    Optical Image-Shearing Dimension Measurement  369
    Shape Metrology and Optical Critical Dimension  370
    Contamination and Defect Detection  370
    1× Visual Surface Inspection Techniques  370
    1× Collimated Light  370
    1× Ultraviolet  372
    Microscope Techniques  372
    Automated In-Line Defect Inspection Systems  376
    General Surface Characterization  378
    Atomic Force Microscopy  378
    Scattrometry  380
    Contamination Identication  380
    Auger Electron Spectroscopy  380
    Electron Spectroscope for Chemical Analysis  381
    Time of Flight Secondary Ion Mass Spectrometry  381
    Evaluation of Stack Thickness and Composition  382
    Device Electrical Measurements  382
    Equipment  383
    Resistors  383
    Diodes  384
    Bipolar Transistors  386
    MOS Transistors  387
    Capacitance-Voltage Profiling  387
    Device Failure Analysis—Emission Microscopy  390
    Review Topics  390
    References  391
    15 The Business of Wafer Fabrication  393
    Introduction  393
    Moore’s Law and the New Wafer-Fabrication Business  393
    Wafer-Fabrication Costs  394
    Overhead  395
    Materials  395
    Equipment  396
    Labor  397
    Production Cost Factors  397
    Yield  398
    Yield Improvements  398
    Yield and Productivity  399
    Increasing Wafer Diameters  400
    Book-to-Bill Ratio  401
    Cost of Ownership  402
    Automation  402
    Process Automation  402
    Wafer-Loading Automation  403
    Clustering  403
    Wafer-Delivery Automation  404
    Closed-Loop Control-System Automation  405
    Factory-Level Automation  405
    Equipment Standards  407
    Fab Floor Layout  407
    Batch versus Single-Wafer Processing  407
    Green Fabs  408
    Statistical Process Control  409
    Inventory Control  412
    Just-in-Time Inventory Control  413
    Quality Control and Certication—ISO 9000  414
    Line Organization  414
    Review Topics  415
    References  416
    16 Introduction to Devices and Integrated Circuit Formation  417
    Introduction  417
    Semiconductor-Device Formation  417
    Resistors  418
    Capacitors  420
    Diodes  422
    Transistors  424
    Field-Effect Transistors  427
    Alternatives to MOSFET Scaling Challenges  434
    Conductors  434
    Integrated-Circuit Formation  436
    Bipolar Circuit Formation  437
    MOS Integrated Circuit Formation  441
    Bi-MOS  445
    Silicon on Insulator Isolation  445
    System on (a) Chip  446
    Superconductors  446
    Microelectromechanical Systems  447
    Strain Gauges  447
    Batteries  447
    Light-Emitting Diodes  447
    Optoelectronics  448
    Solar Cells  448
    Temperature Sensing  448
    Acoustic Wave Devices  448
    Review Topics  449
    References  449
    17 Process and Device Evaluation  451
    Introduction  451
    Circuit Basics  451
    Integrated Circuit Types  454
    Logic Circuits  454
    Memory Circuits  457
    Redundancy  461
    The Next Generation  462
    Review Topics  464
    References  464
    18 Packaging  465
    Introduction  465
    Chip Characteristics  466
    Package Functions and Design  468
    Substantial Lead System  468
    Physical Protection  468
    Environmental Protection  469
    Heat Dissipation  469
    Common Package Parts  469
    Cleanliness and Static Control  471
    Basic Bonding Processes  472
    Wire Bonding Process  473
    Prebonding Wafer Preparation  473
    Die Separation  474
    Die Pick and Place  475
    Die Inspection  476
    Die Attach  476
    Wire Bonding  477
    Tape Automated Bonding Process  480
    Bump or Ball Flip-Chip Bonding  480
    Example Bump or Ball Process  482
    Copper Metallization (Damascene) Bump Bonding  482
    Reow  483
    Die Separation and Die Pick and Place  483
    Alignment of Die to Package  483
    Attachment to Package (or Substrate)  483
    Deux  483
    Underllment  484
    Encapsulation  484
    Postbonding and Preseal Inspection  484
    Sealing Techniques  484
    Lead Plating  486
    Plating Process Flows  487
    Lead Trimming  487
    Deashing  488
    Package Marking  488
    Final Testing  489
    Environmental Tests  489
    Electrical Testing  490
    Burn-In Tests  491
    Package Design  491
    Metal Cans  492
    Pin Grid Arrays  493
    Ball-Grid Arrays or Flip-Chip Ball-Grid Arrays  493
    Quad Packages  493
    Thin Packages  494
    Chip-Scale Packages  494
    Lead on Chip  494
    Three-Dimensional Packages  494
    Stacking Die Techniques  495
    Three-Dimensional Enabling Technologies  497
    Hybrid Circuits  498
    Multichip Modules  498
    The Known Good Die Problem  498
    Package Type or Technology Summary  499
    Package or PCB Connections  499
    Bare Die Techniques and Blob Top  500
    Review Topics  500
    References  501
    Glossary  502
    Index  521
    展开

    前     言

    Preface
    From the Preface of the First Edition: “As the semiconductor industry becomes more important in the economy, more people will be involved in the industry. It is my intention that Microchip Fabrication will serve their needs.” Indeed the semiconductor industry has grown into a major international industrial segment. The semiconductor materials and equipment industries have also grown into major industrial sectors. This edition has followed the goal of the First Edition to serve the training needs of wafer-fabrication workers, whether they be production workers, technicians, professionals in the materials and equipment sectors, or engineers.
    The Sixth Edition retains the physics, chemistry, and electronic fundamentals underlying the sophisticated manufacturing materials and processes of the modern semiconductor industry. It goes on to profile the state-of-the-art processes that have grown from the simple laboratory productions lines of the 1960s. Not every individual process flow can be detailed in an introductory text. But current technologies used in the patterning, doping, and layering steps are explained. The intention of this book is that the reader will gain enough general knowledge to be able to keep abreast of new processes and equipment.
    I am indebted to the valuable input from Anne Miller and Dr. Michael Hynes at Semiconductor Services, Bill Moffat the founder and President of Yield Engineering Systems, and Don Keenan, process engineer extraordinaire.
    Kudos to Senior Editor Michael McCabe and his staff at McGraw-Hill for theirsupport and guidance. And a thanks to Sheena Uprety, Associate Project Manager at Cenveo Publisher Services, and the copyeditor, Ragini Pandey, for turning my manuscript into a ready-for-production text.
    And, of course, a shout out to my ever supportive and patient wife, Mary DeWitt. She edited the first edition, has given me encouragement during the writing of every edition, and has lent her eagle eye to this latest edition.
    Note to Instructors: If you are an instructor using this book as a textbook, then there is an Instructor’s Manual available at www.mhprofessional.com/mf6e.
    
    Peter Van Zant
    
    封底内容:
    本书是一本介绍半导体集成电路和器件制造技术的专业书籍,在半导体领域享有很高的声誉。本书的范围包括半导体工艺的每个阶段:从原材料的制备到封装、测试和成品运输,以及传统的和现代的工艺。全书提供了详细的插图和实例,每章包含回顾总结和习题,并辅以丰富的术语表。第六版修订了微芯片制造领域的新进展,讨论了用于图形化、掺杂和薄膜步骤的先进工艺和尖端技术,使隐含在复杂的现代半导体制造材料和工艺中的物理、化学和电子的基础知识更易理解。本书的主要特点是避开了复杂的数学问题介绍工艺技术内容;加入了半导体业界的新成果,可以使读者了解工艺技术发展的趋势。
    
    内容提要
    ● 半导体产业
    ● 半导体材料和化学品的特性
    ● 晶体生长和硅晶圆的制备
    ● 晶圆制造和封装
    ● 污染控制
    ● 生产能力和工艺良率
    
    ● 氧化 
    ● 从表面制备、曝光、显影到  
      最终检验的十步图形化工艺
    ● 下一代光刻技术 
    ● 掺杂
    ● 薄膜淀积
    
    ● 金属化
    ● 工艺和器件的评估
    ● 晶圆制造中的商业因素
    ● 器件和集成电路的形成
    ● 集成电路
    ● 封装
    
    Peter Van Zant  国际知名半导体专家,具有广阔的工艺工程、培训、咨询和写作方面的背景。他曾先后在IBM和德州仪器(TI)工作,之后在硅谷,又先后在美国国家半导体(National Semiconductor)和单片存储器(Monolithic Memories)公司任晶圆制造工艺工程和管理职位。他还曾在加利福尼亚州洛杉矶的山麓学院(Foothill College)任讲师,讲授半导体课程和针对初始工艺工程师的高级课程。
    展开

    作者简介

    本书暂无作者简介
  • 样 章 试 读
  • 图 书 评 价
华信教育资源网