CHAPTER

The z-Transform and Its
Application to the Analysis
of LTI Systems

Transform techniques are an important tool in the analysis of signals and linear
time-invariant (LTT) systems. In this chapter we introduce the z-transform, develop
its properties, and demonstrate its importance in the analysis and characterization
of linear time-invariant systems.

The z-transform plays the same role in the analysis of discrete-time signals
and LTI systems as the Laplace transform does in the analysis of continuous-time
signals and LTI systems. For example, we shall see that in the z-domain (complex
z-plane) the convolution of two time-domain signals is equivalent to multiplication
of their corresponding z-transforms. This property greatly simplifies the analysis
of the response of an LTI system to various signals. In addition, the z-transform
provides us with a means of characterizing an LT system, and its response to various
signals, by its pole-zero locations.

We begin this chapter by defining the z-transform. Its important properties are
presented in Section 3.2. In Section 3.3 the transform is used to characterize signals
in terms of their pole-zero patterns. Section 3.4 describes methods for inverting the
z-transform of a signal so as to obtain the time-domain representation of the signal.
Section 3.5 is focused on the use of the z-transform in the analysis of LTT systems.
Finally, in Section 3.6, we treat the one-sided z-transform and use it to solve linear
difference equations with nonzero initial conditions.

3.1 The z-Transform

In this section we introduce the z-transform of a discrete-time signal, investigate its
convergence properties, and briefly discuss the inverse z-transform.
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3.1.1 The Direct z-Transform

The z-transform of a discrete-time signal x(n) is defined as the power series

o]

X(2) = Z x(m)z™" (3.1.1)

n=—0o0
where z is a complex variable. The relation (3.1.1) is sometimes called the direct z-
transform because it transforms the time-domain signal x(n) into its complex-plane
representation X (z). The inverse procedure [i.e., obtaining x (n) from X (z)] is called
the inverse z-transform and is examined briefly in Section 3.1.2 and in more detail in
Section 3.4.
For convenience, the z-transform of a signal x(n) is denoted by

X(2) = Z{x(n)} (3.1.2)
whereas the relationship between x(n) and X (z) is indicated by

x(n) <> X(2) (3.1.3)

Since the z-transform is an infinite power series, it exists only for those values of
z for which this series converges. The region of convergence (ROC) of X (z) is the
set of all values of z for which X (z) attains a finite value. Thus any time we cite a
z-transform we should also indicate its ROC.

We illustrate these concepts by some simple examples.

EXAMPLE 3.1.1

Determine the z-transforms of the following finite-duration signals.
@ xi(n) = {%,2,5,7,0,1}

(b) x2(n) = {172,%7,0,1}
(©) x3(n) = {?,071,2,5,7,071}
(d) x4(n) = {2,4,?,7,0,1}

(e) xs(n) =48(n)

) x¢(n)=8(n—k),k >0

(g x7(n) =8(n+k),k>0

Solution.  From definition (3.1.1), we have

(@) X1(z) =1+42z71+5z72 +7z73 4+ 275, ROC: entire z-plane except z = 0

(b) X2(z) =22 4+2z+5+ 777" + 773, ROC: entire z-plane except z =0 and z = oo
(©) X3(2) =2 242234574 +7z7° + 277, ROC: entire z-plane except z = 0

d) Xu(z) =272 +4z+ 5+ 771 + 273, ROC: entire z-plane except z =0 and z = oo
() Xs5(z) =1[i.e.,8(n) < 1], ROC: entire z-plane

) Xs(z) =z F[ie,8(n—k) PIEEN z7¥],k > 0, ROC: entire z-plane except z = 0
(8) X7(z) =z [ie., 8(n + k) PN 7],k > 0, ROC: entire z-plane except z = oo
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From this example it is easily seen that the ROC of a finite-duration signal is the
entire z-plane, except possibly the points z = 0 and/or z = oo. These points are
excluded, because z* (k > 0) becomes unbounded for z = oo and z % (k > 0)
becomes unbounded for z = 0.

From a mathematical point of view the z-transform is simply an alternative
representation of a signal. This is nicely illustrated in Example 3.1.1, where we see
that the coefficient of z7", in a given transform, is the value of the signal at time n.
In other words, the exponent of z contains the time information we need to identify
the samples of the signal.

In many cases we can express the sum of the finite or infinite series for the
z-transform in a closed-form expression. In such cases the z-transform offers a
compact alternative representation of the signal.

EXAMPLE 3.1.2

Determine the z-transform of the signal

1 n
x(n) = <§> u(n)

Solution.  The signal x(n) consists of an infinite number of nonzero values

o= 3) ()G ()

The z-transform of x(n) is the infinite power series

This is an infinite geometric series. We recall that
2 3 1 :
1+A+A°+A +~~-:ﬁ if Al <1
Consequently, for ‘% 77! ‘ < 1, or equivalently, for |z| > %, X (z) converges to

1 1
X(z) = — ROC: |z| > 5
1- EZ_I

We see that in this case, the z-transform provides a compact alternative representation of the
signal x (n).
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Let us express the complex variable z in polar form as
z=rell (3.14)

where r = |z| and 6 = £z. Then X (z) can be expressed as

o0
X (2 mpeit = Z x(n)r e~ om

n=—oo
In the ROC of X(2), | X (z)| < co. But
o
IX@) =] Y x(myr e "
= 3.15
N | N (3.1.5)
< Y e = Y x|
n=—0o n=-—0o

Hence | X (z)] is finite if the sequence x(n)r~" is absolutely summable.

The problem of finding the ROC for X (z) is equivalent to determining the range
of values of r for which the sequence x(n)r " is absolutely summable. To elaborate,
let us express (3.1.5) as

—1 00
IX@I< Y xmr "+ x,(Z)
n=—o0 n=0 (3.1.6)
<Yl + 3 2
n=1 n=0

If X (z) converges in some region of the complex plane, both summations in (3.1.6)
must be finite in that region. If the first sum in (3.1.6) converges, there must exist
values of r small enough such that the product sequence x(—n)r*,1 < n < oo, is
absolutely summable. Therefore, the ROC for the first sum consists of all points
in a circle of some radius r;, where r; < oo, as illustrated in Fig. 3.1.1(a). On the
other hand, if the second sum in (3.1.6) converges, there must exist values of r large
enough such that the product sequence x(n)/r",0 < n < oo, is absolutely summable.
Hence the ROC for the second sum in (3.1.6) consists of all points outside a circle
of radius r > ry, as illustrated in Fig. 3.1.1(b).

Since the convergence of X (z) requires that both sums in (3.1.6) be finite, it
follows that the ROC of X (z) is generally specified as the annular region in the
z-plane, r, < r < r{, which is the common region where both sums are finite. This
region is illustrated in Fig. 3.1.1(c). On the other hand, if , > r{, there is no common
region of convergence for the two sums and hence X (z) does not exist.

The following examples illustrate these important concepts.
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EXAMPLE 3.1.3
Determine the z-transform of the signal
n
x(n) =aod"u@n) = of, n=0
Solution.  From the definition (3.1.1) we have

X(Z) — Zanzfn _ Z(azfl)n
n=0 =0

If ez < 1or equivalently, |z| > ||, this power series converges to 1/(1 — oz ). Thus we
have the z-transform pair
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Figure 3.1.2 The exponential signal x(n) = «"u(n) (a), and the ROC of its
z-transform (b).

x(n) = a"u(n) < X(z) = ROC: |z| > |a| (3.1.7)

1—az7V
The ROC is the exterior of a circle having radius |«|. Figure 3.1.2 shows a graph of the signal
x(n) and its corresponding ROC. Note that, in general, « need not be real.

If we set « = 1 in (3.1.7), we obtain the z-transform of the unit step signal

x(n) = u(n) <> X(z) = — ROC: |z| > 1 (3.1.8)
-z
EXAMPLE 3.1.4
Determine the z-transform of the signal
x(n) = —a"u(—n—1) = 0 ; nz0
—a", n<-1

Solution.  From the definition (3.1.1) we have

-1 00
X@= ) (a7 "==) @2
=1

n=—oo
where [ = —n. Using the formula
A+ A+ A+ = A0+ A+ A+ = %
when |A| < 1 gives
alz 1
X@ = 1—alz 1 —az!

provided that |« ~'z| < 1 or, equivalently, |z| < |«|. Thus

x(n) = —a"u(—n —1) <> X(z) = —1_1?, ROC: |z] < || (3.1.9)

The ROC is now the interior of a circle having radius |«|. This is shown in Fig. 3.1.3.
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Figure 3.1.3 Anticausal signal x(n) = —a"u(—n — 1) (a), and the ROC of its
z-transform (b).

Examples 3.1.3 and 3.1.4 illustrate two very important issues. The first concerns
the uniqueness of the z-transform. From (3.1.7) and (3.1.9) we see that the causal
signal "u(n) and the anticausal signal —a"u(—n — 1) have identical closed-form
expressions for the z-transform, that is,

1

Z{d"u(n)} = Z{—anu(—n — 1)} = Fpp—

This implies that a closed-form expression for the z-transform does not uniquely
specify the signal in the time domain. The ambiguity can be resolved only if in
addition to the closed-form expression, the ROC s specified. In summary, a discrete-
time signal x(n) is uniquely determined by its z-transform X(z) and the region of
convergence of X (z). In this text the term “z-transform” is used to refer to both the
closed-form expression and the corresponding ROC. Example 3.1.3 also illustrates
the point that the ROC of a causal signal is the exterior of a circle of some radius rp
while the ROC of an anticausal signal is the interior of a circle of some radius ri. The
following example considers a sequence that is nonzero for —oo < n < co.

EXAMPLE 3.1.5
Determine the z-transform of the signal
x(n) =a"u(n) +b"u(—n —1)

Solution.  From definition (3.1.1) we have

[ -1 [ 0
X(Z) — Zanz—n + Z an_n — Z(az—l)n + Z(b—lz)[
n=0 n=-—00 n=0 1=1

The first power series converges if ez < 1or|z| > |a|. The second power series converges
if |b71z| <1lor|z| < |b].
In determining the convergence of X (z), we consider two different cases.
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Case 1 |p| < |a|:

Case 2 || > |a|:
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In this case the two ROC above do not overlap, as shown in Fig. 3.1.4(a).
Consequently, we cannot find values of z for which both power series
converge simultaneously. Clearly, in this case, X (z) does not exist.

In this case there is a ring in the z-plane where both power series converge
simultaneously, as shown in Fig. 3.1.4(b). Then we obtain

1 1
l—az ! 1—bpz!
b—«a
a+b—z—abz !

X(@2) =
(3.1.10)

The ROC of X (z) is |a| < |z] < |b].

This example shows that if there is a ROC for an infinite-duration two-sided
signal, it is a ring (annular region) in the z-plane. From Examples 3.1.1, 3.1.3, 3.1.4,
and 3.1.5, we see that the ROC of a signal depends both on its duration (finite
or infinite) and on whether it is causal, anticausal, or two-sided. These facts are
summarized in Table 3.1.

One special case of a two-sided signal is a signal that has infinite duration on
the right side but not on the left [i.e., x(n) = 0 for n < nyp < 0]. A second case is a





