

Figure 6.14: Loop transformation with dynamic multipliers.

dynamical system. If postmultiplying H_1 by (as + 1) results in a strictly passive system or an output strictly passive system that is zero-state observable, we can employ Theorem 6.3 to conclude asymptotic stability of the origin. This idea is illustrated in the next two examples for cases where H_1 is linear and nonlinear, respectively.

Example 6.15 Let H_1 be a linear time-invariant system represented by the state model

$$\dot{x} = Ax + Be_1, \quad y_1 = Cx$$

where

$$A = \left[egin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}
ight], \quad B = \left[egin{array}{cc} 0 \\ 1 \end{array}
ight], \quad ext{and} \quad C = \left[egin{array}{cc} 1 & 0 \end{array}
ight]$$

Its transfer function $1/(s^2+s+1)$ has relative degree two; hence, it is not positive real. Postmultiplying H_1 by (as+1) results in \tilde{H}_1 , which can be represented by the state model

$$\dot{x} = Ax + Be_1, \quad \tilde{y}_1 = \tilde{C}x$$

where $\tilde{C}=C+aCA=\begin{bmatrix} 1 & a \end{bmatrix}$. Its transfer function $(as+1)/(s^2+s+1)$ satisfies the conditions

$$Re\left[\frac{1+j\omega a}{1-\omega^2+j\omega}\right] = \frac{1+(a-1)\omega^2}{(1-\omega^2)^2+\omega^2} > 0, \quad \forall \ \omega \in R$$

and

$$\lim_{\omega \to \infty} \omega^2 \operatorname{Re} \left[\frac{1 + j\omega a}{1 - \omega^2 + j\omega} \right] = a - 1 > 0$$

if a > 1. Thus, choosing a > 1, we can apply Lemmas 6.1 and 6.4 to conclude that \tilde{H}_1 is strictly passive with the storage function $(1/2)x^TPx$ where P satisfies the equations

$$PA + A^T P = -L^T L - \varepsilon P$$
, $PB = \tilde{C}^T$