

第1章 汽车故障诊断的基本知识

汽车是由许多零件、机构和总成构成的复杂有序的技术系统。在使用过程中,由于某一种或几种原因的影响,其技术状况将随行驶里程的增加而变化,其动力性、经济性、可靠性和安全性将逐渐或迅速下降,排气污染和噪声加剧、故障率增加,这不仅对汽车的运行安全、运行消耗、运输效率、运输成本及环境造成极大的影响,甚至还直接影响到汽车的使用寿命。所以,研究汽车故障的变化规律,定期检测汽车的使用性能,及时而准确地诊断出故障部位并排除故障,就成为汽车应用技术的一项重要内容。

1.1 汽车故暗诊断的基本概念

汽车故障诊断技术是指在整车不解体或部分解体的情况下,确定汽车的技术状况,查明 故障原因和故障部位的汽车应用技术。

汽车故障诊断技术是随着汽车的发展从无到有而逐步发展起来的一门技术。国外的一些发达国家,早在 20 世纪 40—50 年代就发展了以故障诊断和性能调试为主的单项检测技术。进入 20 世纪 60 年代后,汽车故障诊断与检测技术获得较大发展,逐渐由单项检测技术、联线建站(出现汽车检测站)技术演变成为既能进行维修诊断又能进行安全环保检测的综合检测技术。随着信息技术的发展,20 世纪 70 年代初出现了集检测控制自动化、数据采集自动化、数据处理自动化、检测结果自动打印等功能为一体的现代综合故障检测技术,使检测效率获得了极大提高。进入 20 世纪 80 年代后,一些先进国家的现代诊断检测技术已达到广泛应用的阶段,为交通、环境、能源、运输成本和运输力等方面带来了明显的社会效益和经济效益。

我国的汽车故障诊断与检测技术起步较晚,在 20 世纪 30 年代,汽车故障诊断完全依靠

工人和技术人员掌握的知识和经验来分析、判断;20 世纪 60—70 年代,我国开始引进和研制汽车故障诊断与检测设备;进入20 世纪 80 年代以后,随着国民经济的发展,特别是随着汽车制造业、公路交通运输业的发展和进口车辆的增多,我国机动车的保有量迅速增加,汽车故障诊断与检测技术成为国家"六五"重点推广项目,并视其为推进汽车维修管理现代化的一项重要技术措施;20 世纪 90 年代初,除交通、公安两部门外,机械、石油、冶金、外贸等系统和部分大专院校,也相继建成了相当数量的汽车检测站;到20 世纪 90 年代末,我国的汽车诊断与检测技术已初具规模,基本形成了遍布全国的汽车检测网。与此同时,交通部颁布了第 13 号部令《汽车运输业车辆技术管理规定》、第 28 号部令《汽车维修质量管理办法》和第 29 号部令《汽车运输业车辆综合性能检测站管理办法》,对汽车故障诊断检测技术、检测制度和综合性能检测站等均做出了明确规定,其组织管理也步入正轨。随着公路交通运输企业、汽车制造企业和整个国民经济的发展,我国的汽车故障诊断检测技术在 21 世纪必将获得进一步发展。

1. 汽车故障

汽车故障是指汽车部分或完全丧失工作能力的现象,其实质是汽车零件本身或零件之间的配合状态发生了异常变化。

汽车故障按丧失工作能力的程度分为局部故障和完全故障。局部故障是指汽车部分丧失了工作能力,降低了使用性能的故障;完全故障是指汽车完全丧失了工作能力,不能行驶的 故障。

汽车故障按造成后果又可分为轻微故障、一般故障、严重故障和致命故障。轻微故障一般不会导致汽车不能行驶或性能下降,不需要更换零件,用随车工具作适当调整即可排除,如某个轮胎螺栓松动等。一般故障是指汽车运行中能及时排除的故障或不能排除的局部故障,一般故障会导致汽车停驶或性能下降,但一般不会导致主要部件和总成的严重损坏,可更换零件或用随车工具在短时间内排除,如大灯灯泡损坏等。严重故障是指汽车运行中无法完全排除的故障,此类故障可能导致零件的严重损坏,必须停车,且不能用更换零件或随车工具在短时间内排除,如发动机汽缸垫损坏等。致命故障是指造成汽车重大损坏的故障,可能引起车毁人亡的恶性重大事故,如制动系统失效等。

2. 汽车故障诊断

汽车故障诊断是指在汽车不解体(或局部解体)的情况下,确定汽车的技术状况,查明 故障部位及故障原因的汽车应用技术。

汽车的技术状况是指定量测得的表征某一时刻汽车外观和性能参数值的总和。

汽车技术状况的诊断是通过检查、测量、分析、判断等一系列活动完成的,其基本方法主要分为两种:直观诊断法和现代仪器设备诊断法。

- (1) 直观诊断法。直观诊断法又称为人工经验诊断法,是指诊断人员凭丰富的实践经验和一定的理论知识,在汽车不解体或局部解体的情况下,依靠直观的感觉印象,借助简单的工具,采用眼观、耳听、手摸和鼻闻等手段,进行检查、试验、分析,确定汽车的技术状况,查明故障原因和故障部位的诊断方法。
 - (2)仪器设备诊断法。仪器设备诊断法是在人工经验诊断法的基础上发展起来的一种诊

断方法,是指在汽车不解体的情况下,利用测试仪器、检测设备和检验工具,检测整车、总成或机构的参数、曲线和波形,为分析、判断汽车技术状况提供定量依据的诊断方法。

上述两种方法往往同时综合使用,故称为综合诊断法。

(3)故障自诊断法。汽车故障自诊断法是随汽车电子控制技术的发展而产生的。汽车上安装的电子控制装置在汽车运行时,根据各种传感器信号是否正常来判断系统运行状态,当故障出现时就会点亮仪表板上相应的故障指示灯,以警告驾驶员,同时指明发生故障的系统。

1.2 汽车故障的成因、症状及变化规律

1. 汽车故障的成因

汽车故障的成因主要有自然因素和人为因素。

- (1)自然故障。自然故障是指汽车在正常的使用和维护条件下,由于不可抗拒的原因而形成的故障。例如,在汽车的使用过程中,零件会产生自然磨损;在长期交变载荷下,零件会产生疲劳;在外载荷及温度残余内应力的作用下,零件会产生变形;此外,非金属零件及电气元件会产生老化等,这些原因均会引起故障。
- (2)人为故障。人为故障是指由于人为的不慎而造成的汽车故障。这类故障起因于在汽车设计、制造和维护过程中的人为因素,具体如下。

汽车设计制造上的因素。在汽车设计中,尽管车辆设计者们考虑得很周全,但也难 免在设计中存在薄弱环节和不足之处。例如,发动机水套内的冷却水流向欠合理而影响散 热,导致个别汽缸磨损剧烈;因空气压缩机结构不合理而上机油;因总体布局不合理或其他 原因而导致制动侧滑;有的进口汽车不符合我国国情而造成大客车的车身强度不足等。

维修配件质量的因素。随着我国汽车保有量的急剧增长,维修配件的需求量也大大增加了。汽车零配件常常是大批量购买并由不同厂家生产的,不可避免地存在质量差异,甚至难免有伪劣产品鱼目混珠,引发各种各样的故障。例如,同一发动机汽缸盖各燃烧室容积不等,导致发动机动力不足或爆燃;凸轮轴正时齿轮的键槽位置超差,会破坏正常的配气相位,降低发动机的动力性;空气滤清器的滤清效果差,会引起汽缸早期磨损;前轮左右钢板弹簧的刚度、挠度不一致和不标准,会影响前轮的定位参数,破坏汽车的操纵稳定性等。

燃油、机油选用因素。根据车型选用燃油和机油,是保证汽车正确使用的必要条件。例如,要求使用 97 号汽油的车辆,若选用了 93 号汽油,发动机就会产生爆燃,冲坏汽缸垫或烧毁活塞顶,并使动力性下降;若压缩比高、热负荷大的汽油机使用了与之不配套的机油,会使汽缸活塞的配合副产生早期磨损;若柴油车在严寒地区使用高凝固点的柴油,会导致汽车起动困难等。

管理方面的问题。由于使用单位和个人不了解或不严格执行车辆技术管理规定,导致车辆使用不合理,维护不定期,修理不及时,从而导致人为故障丛生。在汽车使用中不重视日常维护,新车或大修车不走合,不执行出车前、行驶中、收车后的"三检"工作,不定

期进行"三清"工作等,均会使随机故障频发,不但影响了汽车的使用寿命,而且会危及行车安全。

2. 汽车故障的症状

汽车故障的症状也称为故障现象,是故障的具体表现。汽车故障有下面一些症状。

- (1)使用性能异常。使用性能异常是指汽车的动力性和经济性变差,主要表现在汽车最高行驶速度明显降低,汽车加速性能差;汽车燃油消耗量大和机油消耗量大;汽车乘坐舒适性差,汽车振动和噪声明显加大;汽车操纵稳定性差,汽车易跑偏,车头摆振;制动跑偏,制动距离长或无制动等。
- (2) 工况突变。所谓工况突变,是指汽车的工作状况突然出现不正常的现象,这是比较常见的故障症状。例如,发动机突然熄火后再发动困难,甚至不能发动;发动机在行驶中动力突然降低,使汽车行驶无力;汽车在行驶中突然制动失灵或跑偏等。这种故障虽然症状明显,容易察觉,但其成因复杂,而且往往是由渐变到突变,因此在诊断时,必须认真调查分析突变前有无可疑症状,去伪存真,判明故障的位置。
- (3)声响异常。有些故障,往往可以引起汽车发动机或底盘部分的不正常响声,这种故障症状明显,一般可以及时发现。应当指出的是,有些声响异常的故障可能酿成机件事故,故必须认真对待。经验表明,凡声响沉重并伴有明显振抖的现象,多数是恶性故障,应立即停车并查明原因。一般的声响常因成因不同而带有不同的特征,在判断时,应当仔细查听,正确分辨。
- (4)过热现象。过热现象通常表现在发动机、变速器、驱动桥和制动器等总成上。在正常情况下,无论汽车工作多长时间,这些总成均应保持一定的工作温度。除发动机外,若用手触试时,感到烫疼难忍,即表明该处过热。发动机过热说明冷却系存在故障,如不及时排除,会引起爆燃、早燃、行驶无力,甚至造成活塞等部件烧熔的事故。驱动桥过热通常是由装配不良或缺少机油等故障所致,如不及时排除,将引起齿轮及轴承等零件烧损。因此,对过热症状切不可掉以轻心。
- (5)渗漏现象。渗漏是指汽车的燃油、润滑油、冷却液、制动液(或压缩空气)以及动力转向系油液的渗漏现象。这也是一种明显可察的故障症状。渗漏易造成过热、烧损及转向、制动失灵等故障,一旦发现应及时排除。
- (6)排烟颜色不正常。发动机在工作过程中,正常的燃烧生成物的主要成分应当是二氧化碳和少量的水蒸气。如果发动机燃烧不正常,废气中会掺有未燃烧完全的碳粒、碳化氢、一氧化碳及氮氧化物等。对于汽油机而言,正常的废气应无明显的烟雾。但是,汽缸上机油时,废气呈蓝色;燃烧不完全时,废气呈黑色;油中掺水时,废气呈白色。柴油发动机的排气颜色不正常时,通常是发动机无力或不易发动的伴随现象。因此,烟色为诊断柴油机故障的重要依据之一。
- (7)失控或振抖。汽车或总成工作时,可能出现操纵困难或失灵,有时可能出现自身振抖。例如,由于前轮定位不正确而出现前轮振摆或跑偏;由于曲轴或传动轴动不平衡而相应地使发动机或传动系统在运转中产生振抖等。
 - (8)燃油、润滑油消耗异常。燃油、润滑油消耗异常,也是一种故障症状。燃油消耗增

多,一般为发动机工作不良或底盘(传动系、制动系)调整不当所致。

润滑油的消耗过甚,除了渗漏原因之外,多数是发动机存在故障,这时常常伴有加机油口处大量冒烟或脉动冒烟,排气烟颜色不正常等现象,其原因主要是活塞与汽缸壁的配合间隙过大或活塞与汽缸壁有严重损伤。若发动机在工作中,润滑油的消耗量有增无减,可能是润滑系统中掺入冷却水或汽油。因此,燃油、润滑油消耗异常是发动机存在故障的一个重要标志。

- (9)有特殊气味。汽车在运行中,如有制动拖滞或离合器打滑等故障,则会散发出摩擦片的焦臭味;发动机过热或润滑油、制动液(带有真空增压器的液压制动系)燃烧时,会散发出一种特殊的气味;电路短路、搭铁导致导线烧毁时,也会产生异味。行车过程中一经发觉车内有特殊气味,应立即停车并查明故障的位置。
- (10)汽车外观异常。将汽车停放在平坦的场地上,检查其外形状况,如有横向或纵向 歪斜等现象,即为外观异常,其原因多数是车架、车身、悬挂、轮胎等出现异常。汽车外观 异常会引起方向不稳、行驶跑偏、重心转移和车轮吃胎等故障。

3. 汽车故障的变化规律

汽车故障的变化规律是指汽车故障率随行驶里程变化的规律。

汽车故障率是指使用达到某行驶里程的汽车,在单位行驶里程内发生故障的概率,也称失效率或故障程度。它是衡量汽车可靠性的一个重要参数,体现了汽车在使用中丧失工作能力的程度。

在正常的使用和维护条件下,汽车故障率 $\lambda(l)$ 与行驶里程 l之间的关系呈"浴盆"形曲线,如图 1.1 所示。由图 1.1 可见,汽车故障变化规律呈现出三个明显的阶段。

- (1)早期故障期。早期故障期相当于汽车的磨合期。因初期磨损量较大,所以故障率较高,但随行驶里程增加而逐渐下降。
- (2)随机故障期或偶然故障期。在随机故障期,汽车故障的发生是随机性的,没有一种特定

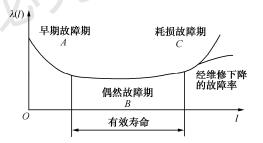


图 1.1 汽车故障变化规律曲线

的故障起主导作用,多由于使用不当、操作疏忽、润滑不良、维护欠佳,以及材料内部隐患或工艺和结构缺陷等偶然因素所致。在此期间,汽车或总成处于最佳状态,其故障率低而稳定,其对应的行驶里程一般被称为汽车的有效寿命。

(3)耗损故障期。在耗损故障期,由于零件磨损量急剧增加,大部分零件老化耗损严重,特别是大多数受交变载荷作用而极易磨损的零件已经老化,因而故障率急剧上升,出现大量故障,若不及时维修,将导致汽车或总成报废。因此,必须把握好耗损点,制定合理的维修周期。

由上述可知,早期故障期和随机故障期所对应的行驶里程即为汽车的修理周期或称为修理间隔里程。

1.3 汽车故障的诊断方法

在汽车故障诊断中,目前有人工经验诊断法、仪器设备诊断法和故障自诊断三种。

1. 人工经验诊断法

人工经验诊断法是诊断人员凭借一定的理论知识和积累的实践经验,利用简单工具诊断 汽车故障的方法。

人工经验诊断汽车故障的特点是不需要任何仪表器具或其他条件,在任何场合下都可以进行,特别是对汽车运行过程中出现的随机故障,不失为一种行之有效的诊断方法。然而,它只能对故障进行定性的分析,而对于因诸多因素导致的复杂故障则诊断困难,诊断的准确性与速度取决于诊断技术人员的技术水平。人工经验诊断法经过不断的积累、总结和完善,已朝着人工智能分析、逻辑推理的方向发展。在使用本方法时,一般应先了解汽车的使用和维护情况,搞清故障特征及其伴随现象,然后由简到繁、由表及里地进行推理分析,做出判断。其诊断方法大致分为望问法、观察法、听觉法、嗅觉法、触摸法和试验法六种。

- (1)望问法,即查看和询问。看和问是快速诊断汽车故障的有效方法。除驾驶员诊断自己驾驶的车辆之外,其他人在诊断前,必须先了解情况,包括车辆的型号、使用的年限和行驶里程、使用条件、近期维护修理情况、故障的预兆和现象,以及故障是渐变还是突变、发生故障后做了哪些检查和修理等。此外,车辆的技术档案是一个重要的调查资料和依据。即便是有丰富经验的诊断人员,若不先问清楚情况就着手诊断,就难免会出现错误。
- (2)观察法,即按照汽车使用者指出的故障发生部位仔细观察故障现象,而后对故障做出判断,这是一种应用最多的、最基本的也是最有效的故障诊断法。例如,观察整车和发动机有无油或水泄漏,有无连接松动,排气颜色是否正常,空气滤清器有无被堵塞,车轮有无偏磨等。在观察的过程中,可以用理论知识和积累的经验,做出周密的思考和推证,由表及里,把故障现象看透。
- (3)听觉法,即凭听觉判断汽车或总成在工作时有无异响。汽车运行时,发动机以不同的工况运转,汽车和发动机这个整体发出一种嘈杂却有规律的声音。当某一个部位发生故障时就会出现异常响声,有经验者可以根据发出的异常响声,立即判断汽车故障。例如,发动机曲轴和连杆机构异响、主传动器异响、传动轴异响,都可以轻易地判断出来。对于一个好的维修工或驾驶员应在行车中锻炼听觉,听清汽车各部位发出的声音,并从中判断出异响和故障。
- (4)嗅觉法,即凭汽车或总成在运转时所发出的某些特殊气味来判断故障的位置。例如,发动机烧机油和发动机燃烧不完全,在发动机排出的废气中会有异味;制动器摩擦片烧损、离合器摩擦片烧损或电线烧毁,会产生非金属材料烧煳的特殊气味。汽车运行中一旦发生异味,或者异味较大时应停车进行检查,以查清故障根源,采取相应的措施,使之消除异味,如是汽车故障则应排除或将汽车送修。
 - (5)触摸法,即用手、脚触试可能产生故障的部位,判断其工作是否正常。例如,驾驶员

用手摸制动鼓,凭温度判断车轮阻滞情况;用脚踹车轮轮胎,凭轮胎的弹力、偏斜和摆振情况判断轮胎气压、轮毂轴承的紧固情况;用手摸高压油管脉动检查高压油管的供油情况;用手指感觉燃油泵的工作等。

(6)试验法,即以试来验证。例如,用单缸断火(油)法判定发动机产生某些异响的部位;用突然加速法查听异响的变化;用试换零件法,找出故障的部位;在道路试验中,根据加速性能、滑行距离判断发动机的动力性和底盘的调整润滑情况等。

人工经验诊断法不需要专用的仪器设备,投资小,见效快;但诊断速度慢,准确性差,不能进行定量分析,需要诊断人员有较高的技术水平。人工经验诊断法多适用于中小型维修企业和运输企业,虽然有一定的缺点,但它在相当长的时期内仍有十分重要的实用价值,即使普遍使用现代仪器设备进行故障诊断,也不能完全脱离人工经验诊断法。近年来刚刚起步研制的专家诊断系统,也是把人脑的分析、判断功能通过计算机语言变成微机的分析、判断功能。所以,不能轻视人工经验诊断法,更不能忽视其实用性。

2. 仪器设备诊断法

仪器设备诊断法是利用仪器和设备(其中包括常用仪器、仪表和专用设备等)诊断汽车 故障的方法。

仪器设备诊断法是在传统的人工经验诊断法的基础上随着社会和科学技术的进步,逐渐 发展起来的。与人工经验诊断法相比较,其不同点在于:一是要借助于仪器;二是将检查结 果定量化了。

目前可供利用的仪器设备有:万用表、点火正时灯、汽缸压力表、真空表、油压表、声级计、流量计、油耗仪、示波器、汽缸漏气量检测仪、曲轴箱窜气量检测仪、气体分析仪、烟度计,以及功能比较齐全的测功机、四轮定位仪、制动试验台、侧滑试验台、发动机综合检测仪、底盘测功机等。这些仪器设备给人们提供了可靠的工具,使汽车故障诊断从定性诊断发展为定量诊断。

现代仪器设备诊断法具有检测速度快、准确性高、能定量分析和可实现快速诊断等优点,而且采用微机控制的现代电子仪器设备能自动分析、判断、存储并打印出汽车各项性能参数。但其缺点是投资大,需有专用厂房,需要培训操作人员,检测成本高等。这种诊断方法适用于汽车检测站和大中型维修企业。使用现代仪器设备诊断法是汽车诊断与检测技术发展的必然趋势。

3. 故障自诊断

故障自诊断法是利用汽车本身装备的电子控制装置对系统产生的故障进行自行诊断的 方法。

随着现代科学技术特别是计算机技术的进步,20 世纪末,汽车故障的自诊断随汽车电子控制技术的进步而发展起来。汽车电子控制系统机理与结构的复杂性,要求其自身必须建立可靠的故障自诊断系统。1979 年,美国通用公司首次在汽车上运用电子控制装置"ECU"自诊断系统。该系统由存储于 ECU 中的软件及相应的硬件构成。当汽车运行时,ECU 不断监控系统中各部分的工作情况,如果发生故障,ECU 根据故障的性质和程度,首先进入失效安全模式

(也称安全回家模式),使汽车有可能行驶到附近的维修点排除故障。同时,将故障信息以代码的形式存储,在汽车维修时,利用专门的仪器和方法提取故障代码,据此排除故障后再将其清除。这种汽车故障自诊断系统又称 OBD。

OBD 有 OBD、OBD- 、OBD- 三种汽车电控系统故障自诊断系统。1996 年,世界各汽车制造厂商全面执行 OBD- 标准。OBD- 系统具有标准相同的 16 脚诊断座,统一了各车型的故障代码及其含义,具有行车记录器功能和数值分析资料的传输功能。其资料传输线有两个标准,即欧洲标准 ISO 和美国统一标准 SAE,1996 年后,许多美国生产的汽车在配备普通的 OBD- 系统的同时,又增设了加强的 Enhanced OBD- 诊断系统,它在很大程度上提高了通信速度,而且增加了对自动变速器、ABS 和 SRS 系统的诊断。

1.4 汽车故障诊断的原则和步骤

- 1. 故障诊断的一般原则
- (1) 先思后行。对电控汽油喷射发动机的故障现象先进行综合分析,在初步了解故障原因的基础上,再进行故障检查,以避免故障诊断的盲目性。
- (2) 先外后内。在发动机出现故障时,先对电控系统以外的可疑故障部位进行检查。这样,可避免无谓的检查。例如,本来是一个与电控系统无关的故障,却先对电控系统的各个元件、器件、线路等进行了复杂的检查,而真正的故障部位却未找到。
- (3)先简后繁。应优先检查那些能以简单方法检查的可疑故障部位。可以利用人的感官,如问、看、触、听、试等直观检查方法,将一些较为明显的故障部位迅速找出来。
- (4) 先易后难。发动机的某一故障现象通常是由某些总成或部件引起的,应先对那些常见故障部位进行检查,再对其他不常见的故障部位进行检查。这样,不仅可以迅速排除故障,而且省时省力。
- (5)代码优先。电控汽油喷射发动机出现故障后,通过发动机故障警告灯闪烁向驾驶人员报警。但是对于某些故障,自诊断系统只存储该故障码,并不报警。因此,在对发动机做系统检查前,应先按制造厂提供的方法,读出故障码,再按照故障码的内容排除该故障。
- (6)积累资料。积累资料是指在检修该车型前,应准备好与该车型有关的检修数据资料。除了可以从维修手册、专业书刊上收集整理这些检修数据资料外,另一个有效的途径是随时检测记录无故障车辆的有关参数。这样,通过逐渐积累,可在日后检修同类型车辆时,将这些平时积累的检测参数与实测参数进行比较,供检修人员参考。

2. 故障诊断的基本步骤

(1)填写用户调查表。为了迅速查找出故障发生点,首先要询问用户,了解故障出现时的情况、自然条件,了解故障的发生过程及检修历史等;然后详细填写维修车辆登记表。 此表与诊断测试结果一起作为查找故障点的依据,同时也可作为检修后验收、结账的参考

依据。

(2)外观初步检查。电控燃油喷射系统的故障大多数是小故障,如线路短路或断路或人 为的装错,以及一些传感器、执行器的工作性能参数的失准。

所有进气胶管均不能有破裂。检查各种卡箍紧固是否适度。

检查各种真空管是否有破裂、扭结、插错。插错真空管会造成发动机怠速不稳,甚至使 发动机无规律地出现工作不良。

喷油器应安装正确,密封圈完好。密封圈上部安装或密封不良会导致漏油,导致严重事故的发生;下部密封不良会导致漏气,使发动机真空度下降,运行不良,还会使进气压力传感器信号增加,喷油量增加,从而致使混合气变浓等。

- (3)故障再现。根据车主所叙述的故障现象(如有必要可在清除故障代码后)进行行车试验,尽力在车速、负荷、道路条件达到产生故障的条件下驾驶汽车,尽量使故障现象再度显现。从故障表现的形式上,结合外观仔细检查结果,对该车故障有一个初步的诊断。
- (4)起动发动机故障自诊断系统,读取故障码并结合该车故障诊断有关资料查找故障根源。故障诊断的基本流程如图 1.2 所示。

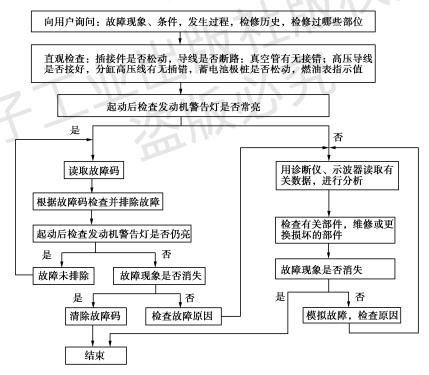


图 1.2 故障诊断的基本流程

读取故障码。查阅该车故障码表,掌握故障码的确切含义,确定故障的产生部位。 如无故障码输出(显示正常码)或没有故障码含义注释表,那么可根据故障现象, 结合该车型的故障诊断、检修表,按所示故障部位顺序进行检查。

(5)用发动机故障检测仪对发动机进行故障诊断,查找故障源。对已确诊的故障点进行

调整、测试、维修;排除故障后,清除故障码,并试车验证故障是否排除。

复习思考题

- 1. 什么是汽车故障?汽车故障怎样分类?
- 2. 什么原因会造成汽车的人为故障?
- 3.举例说明汽车各总成有故障时会产生哪些症状。
- 4. 汽车故障有什么变化规律?
- 5. 对汽车故障进行人工诊断时可采用哪几种方法?

