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Chapter 4

ALGORITHMS

4.1 Introduction
4.2 Examples of Algorithms
4.3 Analysis of Algorithms
4.4 Recursive Algorithms

An algorithm is a step-by-step method of solving some problem. Such an approach
to problem-solving is not new; indeed, the word “algorithm” derives from the name of
the ninth-century Persian mathematician al-Khowārizmı̄. Today, “algorithm” typically
refers to a solution that can be executed by a computer. In this book, wewill be concerned
primarily with algorithms that can be executed by a “traditional” computer, that is, a
computer, such as a personal computer, with a single processor that executes instructions
step-by-step.

After introducing algorithms and providing several examples, we turn to the anal-
ysis of algorithms, which refers to the time and space required to execute algorithms.
We conclude by discussing recursive algorithms—algorithms that refer to themselves.

4.1 Introduction
Algorithms typically have the following characteristics:

■ Input The algorithm receives input.
■ Output The algorithm produces output.
■ Precision The steps are precisely stated.
■ Determinism The intermediate results of each step of execution are unique and

are determined only by the inputs and the results of the preceding steps.
■ Finiteness The algorithm terminates; that is, it stops after finitely many instruc-

tions have been executed.
■ Correctness The output produced by the algorithm is correct; that is, the algo-

rithm correctly solves the problem.
■ Generality The algorithm applies to a set of inputs.

As an example, consider the following algorithm that finds the maximum of three num-
bers a, b, and c:

1. large = a.

2. If b > large, then large = b.

3. If c > large, then large = c.

(As explained in Appendix C, = is the assignment operator.)
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174 Chapter 4 ◆ Algorithms

The idea of the algorithm is to inspect the numbers one by one and copy the largest
value seen into a variable large. At the conclusion of the algorithm, large will then be
equal to the largest of the three numbers.

We show how the preceding algorithm executes for some specific values of a, b,
and c. Such a simulation is called a trace. First suppose that a = 1, b = 5, and c = 3.
At line 1, we set large to a (1). At line 2, b > large (5 > 1) is true, so we set large to
b (5). At line 3, c > large (3 > 5) is false, so we do nothing. At this point large is 5, the
largest of a, b, and c.

Suppose that a = 6, b = 1, and c = 9. At line 1, we set large to a (6). At line 2,
b > large (1 > 6) is false, so we do nothing. At line 3, c > large (9 > 6) is true, so we
set large to 9. At this point large is 9, the largest of a, b, and c.

We verify that our example algorithm has the properties set forth at the beginning
of this section.

The algorithm receives the three values a, b, and c as input and produces the value
large as output.

The steps of the algorithm are stated sufficiently precisely so that the algorithm
could be written in a programming language and executed by a computer.

Given values for the input, each intermediate step of an algorithm produces a
unique result. For example, given the values a = 1, b = 5, and c = 3, at line 2, large
will be set to 5 regardless of who executes the algorithm.

The algorithm terminates after finitely many steps (three steps) correctly answer-
ing the given question (find the largest of the three values input).

The algorithm is general; it can find the largest value of any three numbers.
Our description of what an algorithm is will suffice for our needs in this book.

However, it should be noted that it is possible to give a precise, mathematical definition
of “algorithm” (see the Notes for Chapter 12).

Although ordinary language is sometimes adequate to specify an algorithm, most
mathematicians and computer scientists prefer pseudocode because of its precision,
structure, and universality. Pseudocode is so named because it resembles the actual code
of computer languages such as C++ and Java. There are many versions of pseudocode.
Unlike actual computer languages, which must be concerned about semicolons, upper-
case and lowercase letters, special words, and so on, any version of pseudocode is ac-
ceptable as long as its instructions are unambiguous. Our pseudocode is described in
detail in Appendix C.

As our first example of an algorithm written in pseudocode, we rewrite the first
algorithm in this section, which finds the maximum of three numbers.

Algorithm 4.1.1 Finding the Maximum of Three Numbers

This algorithm finds the largest of the numbers a, b, and c.
Input: a, b, c

Output: large (the largest of a, b, and c)

1. max3(a, b, c) {
2. large = a
3. if (b > large) // if b is larger than large, update large
4. large = b
5. if (c > large) // if c is larger than large, update large
6. large = c
7. return large
8. }
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4.1 ◆ Introduction 175

Our algorithms consist of a title, a brief description of the algorithm, the input
to and output from the algorithm, and the functions containing the instructions of the
algorithm. Algorithm 4.1.1 consists of a single function. Tomake it convenient to refer to
individual lines within a function, we sometimes number some of the lines. The function
in Algorithm 4.1.1 has eight numbered lines.

When the function in Algorithm 4.1.1 executes, at line 2 we set large to a. At
line 3, b and large are compared. If b is greater than large, we execute line 4

large = b

but if b is not greater than large, we skip to line 5. At line 5, c and large are compared.
If c is greater than large, we execute line 6

large = c

but if c is not greater than large, we skip to line 7. Thus when we arrive at line 7, large
will correctly hold the largest of a, b, and c.

At line 7 we return the value of large, which is equal to the largest of the numbers
a, b, and c, to the invoker of the function and terminate the function. Algorithm 4.1.1
has correctly found the largest of three numbers.

The method of Algorithm 4.1.1 can be used to find the largest value in a
sequence.

Algorithm 4.1.2 Finding the Maximum Value in a Sequence

This algorithm finds the largest of the numbers s1, . . . , sn.

Input: s, n

Output: large (the largest value in the sequence s)

max(s, n) {
large = s1
for i = 2 to n

if (si > large)
large = si

return large
}

We verify that Algorithm 4.1.2 is correct by proving that

large is the largest value in the subsequence s1, . . . , si (4.1.1)

is a loop invariant using induction on i.
For the Basis Step (i = 1), we note that just before the for loop begins executing,

large is set to s1; so large is surely the largest value in the subsequence s1.
Assume that large is the largest value in the subsequence s1, . . . , si. If i < n is

true (so that the for loop body executes again), i becomes i+1. Suppose first that si+1 >

large. It then follows that si+1 is the largest value in the subsequence s1, . . . , si, si+1. In
this case, the algorithm assigns large the value si+1. Now large is equal to the largest
value in the subsequence s1, . . . , si, si+1. Suppose next that si+1 ≤ large. It then fol-
lows that large is the largest value in the subsequence s1, . . . , si, si+1. In this case, the
algorithm does not change the value of large; thus, large is the largest value in the
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176 Chapter 4 ◆ Algorithms

subsequence s1, . . . , si, si+1. We have proved the Inductive Step. Therefore, (4.1.1) is
a loop invariant.

The for loop terminates when i = n. Because (4.1.1) is a loop invariant, at this
point large is the largest value in the sequence s1, . . . , sn. Therefore, Algorithm 4.1.2 is
correct.

4.1 Problem-Solving Tips

To construct an algorithm, it is often helpful to assume that you are in the middle of
the algorithm and part of the problem has been solved. For example, in finding the
largest element in a sequence s1, . . . , sn (Algorithm 4.1.2), it was helpful to assume
that we had already found the largest element large in the subsequence s1, . . . , si.
Then, all we had to do was look at the next element si+1 and, if si+1 was larger than
large, we simply updated large. If si+1 was not larger than large, we did not mod-
ify large. Iterating this procedure yields the algorithm. These observations also led to
the loop invariant (4.1.1) which allowed us to prove that Algorithm 4.1.2 is
correct.

4.1 Review Exercises

1. What is an algorithm?

2. Describe the following properties an algorithm typically has:
input, output, precision, determinism, finiteness, correctness,
and generality.

3. What is a trace of an algorithm?

4. What are the advantages of pseudocode over ordinary text in
writing an algorithm?

5. How do algorithms relate to pseudocode functions?

4.1 Exercises

1. Consult the instructions for connecting a DVD or Blu-
ray player to a TV. Which properties of an algorithm—
input, output, precision, determinism, finiteness, correctness,
generality—are present? Which properties are lacking?

2. Consult the instructions for adding a contact to a cell phone.
Which properties of an algorithm—input, output, precision,
determinism, finiteness, correctness, generality—are present?
Which properties are lacking?

3. Goldbach’s conjecture states that every even number greater
than 2 is the sum of two prime numbers. Here is a pro-
posed algorithm that checks whether Goldbach’s conjecture is
true:

1. Let n = 4.

2. If n is not the sum of two primes, output “no” and stop.

3. Else increase n by 2 and continue with step 2.

4. Output “yes” and stop.

Which properties of an algorithm—input, output, precision,
determinism, finiteness, correctness, generality—does this
proposed algorithm have? Do any of them depend on the truth
of Goldbach’s conjecture (which mathematicians have not yet
settled)?

4. Write an algorithm that finds the smallest element among a, b,
and c.

5. Write an algorithm that finds the second-smallest element
among a, b, and c. Assume that the values of a, b, and c are
distinct.

6. Write an algorithm that returns the smallest value in the se-
quence s1, . . . , sn.

7. Write an algorithm that returns the largest and second-largest
values in the sequence s1, . . . , sn. Assume that n > 1 and the
values in the sequence are distinct.

8. Write an algorithm that returns the smallest and second-
smallest values in the sequence s1, . . . , sn. Assume that n > 1
and the values in the sequence are distinct.

9. Write an algorithm that outputs the smallest and largest values
in the sequence s1, . . . , sn.

10. Write an algorithm that returns the index of the first occur-
rence of the largest element in the sequence s1, . . . , sn. Exam-
ple: If the sequence is 6.2, 8.9, 4.2, 8.9, the algorithm returns
the value 2.

11. Write an algorithm that returns the index of the last oc-
currence of the largest element in the sequence s1, . . . , sn.
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4.2 ◆ Examples of Algorithms 177

Example: If the sequence is 6.2, 8.9, 4.2, 8.9, the algorithm
returns the value 4.

12. Write an algorithm that returns the sum of the sequence of
numbers s1, . . . , sn.

13. Write an algorithm that returns the index of the first item that
is less than its predecessor in the sequence s1, . . . , sn. If s is in
nondecreasing order, the algorithm returns the value 0. Exam-
ple: If the sequence is

AMY BRUNO ELIE DAN ZEKE,

the algorithm returns the value 4.

14. Write an algorithm that returns the index of the first item that
is greater than its predecessor in the sequence s1, . . . , sn. If s
is in nonincreasing order, the algorithm returns the value 0.
Example: If the sequence is

AMY BRUNO ELIE DAN ZEKE,

the algorithm returns the value 2.

15. Write an algorithm that reverses the sequence s1, . . . , sn.
Example: If the sequence is

AMY BRUNO ELIE,

the reversed sequence is

ELIE BRUNO AMY.

16. Write the standard method of adding two positive decimal
integers, taught in elementary schools, as an algorithm.

17. Write an algorithm that receives as input the n × n matrix A
and outputs the transpose AT .

18. Write an algorithm that receives as input the matrix of a rela-
tion R and tests whether R is reflexive.

19. Write an algorithm that receives as input the matrix of a rela-
tion R and tests whether R is symmetric.

20. Write an algorithm that receives as input the matrix of a rela-
tion R and tests whether R is transitive.

21. Write an algorithm that receives as input the matrix of a rela-
tion R and tests whether R is antisymmetric.

22. Write an algorithm that receives as input the matrix of a rela-
tion R and tests whether R is a function.

23. Write an algorithm that receives as input the matrix of a rela-
tion R and produces as output the matrix of the inverse relation
R−1.

24. Write an algorithm that receives as input the matrices of re-
lations R1 and R2 and produces as output the matrix of the
composition R2 ◦ R1.

25. Write an algorithm whose input is a sequence s1, . . . , sn and
a value x. (Assume that all the values are real numbers.) The
algorithm returns true if si + sj = x, for some i �= j, and false
otherwise. Example: If the input sequence is 2, 12, 6, 14 and
x = 26, the algorithm returns true because 12 + 14 = 26.
If the input sequence is 2, 12, 6, 14 and x = 4, the algo-
rithm returns false because no distinct pair in the sequence
sums to 4.

4.2 Examples of Algorithms
Algorithms have been devised to solve many problems. In this section, we give examples
of several useful algorithms. Throughout the remainder of the book, we will investigate
many additional algorithms.

Searching
A large amount of computer time is devoted to searching.When a teller looks for a record
in a bank, a computer program searches for the record. Looking for a solution to a puzzle
or for an optimal move in a game can be stated as a searching problem. Using a search
engine on the web is another example of a searching problem. Looking for specified text
in a document when running a word processor is yet another example of a searching
problem. We discuss an algorithm to solve the text-searching problem.

Suppose that we are given text t (e.g., a word processor document) and we want
to find the first occurrence of pattern p in t (e.g., we want to find the first occurrence of
the string p = “Nova Scotia” in t) or determine that p does not occur in t. We index the
characters in t starting at 1. One approach to searching for p is to check whether p occurs
at index 1 in t. If so, we stop, having found the first occurrence of p in t. If not, we check
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178 Chapter 4 ◆ Algorithms

whether p occurs at index 2 in t. If so, we stop, having found the first occurrence of p in
t. If not, we next check whether p occurs at index 3 in t, and so on.

We state the text-searching algorithm as Algorithm 4.2.1.

Algorithm 4.2.1 Text Search

This algorithm searches for an occurrence of the pattern p in text t. It returns the
smallest index i such that p occurs in t starting at index i. If p does not occur in t, it
returns 0.

Input: p (indexed from 1 to m), m, t (indexed from 1 to n), n

Output: i

text search(p,m, t, n) {
for i = 1 to n − m + 1 {

j = 1

// i is the index in t of the first character of the substring
// to compare with p, and j is the index in p

// the while loop compares ti · · · ti+m−1 and p1 · · · pm
while (ti+j−1 == pj) {

j = j + 1
if (j > m)

return i
}

}
return 0

}

The variable imarks the index in t of the first character of the substring to compare
with p. The algorithm first tries i = 1, then i = 2, and so on. Index n−m+ 1 is the last
possible value for i since, at this point, the string tn−m+1tn−m+2 · · · tm has length exactlym.

After the value of i is set, the while loop compares ti · · · ti+m−1 and p1 · · · pm. If the
characters match,

ti+j−1 == pj

j is incremented

j = j + 1

and the next characters are compared. If j is m + 1, all m characters have matched and
we have found p at index i in t. In this case, the algorithm returns i:

if (j > m)

return i

If the for loop runs to completion, a match was never found; so the algorithm returns 0.

Example 4.2.2 Figure 4.2.1 shows a trace of Algorithm 4.2.1 where we are searching for the pattern
“001” in the text “010001”.
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001
010001

j = 1
↓

↑
i = 1

001
010001

j = 2
↓ (×)

↑
i = 1

001
010001

j = 1
↓ (×)

↑
i = 2

(1) (2) (3)

001
010001

j = 1
↓

↑
i = 3

001
010001

j = 2
↓

↑
i = 3

001
010001

j = 3
↓ (×)

↑
i = 3

(4) (5) (6)

001
010001

j = 1
↓

↑
i = 4

001
010001

j = 2
↓

↑
i = 4

001
010001

j = 3
↓

↑
i = 4

(7) (8) (9)

Figure 4.2.1 Searching for “001” in “010001” using Algorithm 4.2.1.
The cross (×) in steps (2), (3), and (6) marks a mismatch.

Sorting
To sort a sequence is to put it in some specified order. If we have a sequence of names,
we might want the sequence sorted in nondecreasing order according to dictionary order.
For example, if the sequence is

Jones, Johnson, Appel, Zamora, Chu,

after sorting the sequence in nondecreasing order, we would obtain

Appel, Chu, Johnson, Jones, Zamora.

A major advantage of using a sorted sequence rather than an unsorted sequence is that
it is much easier to find a particular item. Imagine trying to find the phone number
of a particular individual in the New York City telephone book if the names were not
sorted!

Many sorting algorithms have been devised (see, e.g., [Knuth, 1998b]).
Which algorithm is preferred in a particular situation depends on factors such as the
size of the data and how the data are represented. We discuss insertion sort, which
is one of the fastest algorithms for sorting small sequences (less than 50 or so
items).

We assume that the input to insertion sort is s1, . . . , sn and that the goal is to sort
the data in nondecreasing order. At the ith iteration of insertion sort, the first part of
the sequence s1, . . . , si will have been rearranged so that it is sorted. (We will explain
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180 Chapter 4 ◆ Algorithms

shortly how s1, . . . , si gets sorted.) Insertion sort then inserts si+1 in s1, . . . , si so that
s1, . . . , si, si+1 is sorted.

For example, suppose that i = 4 and s1, . . . , s4 is

8 13 20 27

If s5 is 16, after it is inserted, s1, . . . , s5 becomes

8 13 16 20 27

Notice that 20 and 27, being greater than 16, move one index to the right to make room
for 16. Thus the “insert” part of the algorithm is: Beginning at the right of the sorted
subsequence, move an element one index to the right if it is greater than the element to
insert. Repeat until reaching the first index or encountering an element that is less than
or equal to the element to insert.

For example, to insert 16 in

8 13 20 27

we first compare 16 and 27. Since 27 is greater than 16, 27 moves one index to the
right:

8 13 20 27

We next compare 16 with 20. Since 20 is greater than 16, 20 moves one index to the
right:

8 13 20 27

We next compare 16 with 13. Since 13 is less than or equal to 16, we insert (i.e., copy)
16 to the third index:

8 13 16 20 27

This subsequence is now sorted.
Having explained the key idea of insertion sort, we now complete the explanation

of the algorithm. Insertion sort begins by inserting s2 into the subsequence s1. Note that s1
by itself is sorted! Now s1, s2 is sorted. Next, insertion sort inserts s3 into the now-sorted
subsequence s1, s2. Now s1, s2, s3 is sorted. This procedure continues until insertion sort
inserts sn into the sorted subsequence s1, . . . , sn−1. Now the entire sequence s1, . . . , sn
is sorted. We obtain the following algorithm.
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4.2 ◆ Examples of Algorithms 181

Algorithm 4.2.3 Insertion Sort

This algorithm sorts the sequence s1, . . . , sn in nondecreasing order.

Input: s, n

Output: s (sorted)

insertion sort(s, n) {
for i = 2 to n {

val = si // save si so it can be inserted into the correct place
j = i − 1
// if val < sj, move sj right to make room for si
while (j ≥ 1 ∧ val < sj) {

sj+1 = sj
j = j − 1

}
sj+1 = val // insert val

}
}

We leave proving that Algorithm 4.2.3 is correct as an exercise (see Exercise 14).

Time and Space for Algorithms
It is important to know or be able to estimate the time (e.g., the number of steps) and
space (e.g., the number of variables, length of the sequences involved) required by algo-
rithms. Knowing the time and space required by algorithms allows us to compare algo-
rithms that solve the same problem. For example, if one algorithm takes n steps to solve
a problem and another algorithm takes n2 steps to solve the same problem, we would
surely prefer the first algorithm, assuming that the space requirements are acceptable. In
Section 4.3, we will give the technical definitions that allow us to make rigorous state-
ments about the time and space required by algorithms.

The for loop in Algorithm 4.2.3 always executes n − 1 times, but the number of
times that the while loop executes for a particular value of i depends on the input. Thus,
even for a fixed size n, the time required by Algorithm 4.2.3 depends on the input. For
example, if the input sequence is already sorted in nondecreasing order,

val < sj (4.2.1)

will always be false and the body of the while loop will never be executed. We call this
time the best-case time.

On the other hand, if the sequence is sorted in decreasing order, (4.2.1) will always
be true and the while loop will execute the maximum number of times. (The while loop
will execute i − 1 times during the ith iteration of the for loop.) We call this time the
worst-case time.

Randomized Algorithms
It is occasionally necessary to relax the requirements of an algorithm stated in Sec-
tion 4.1. Many algorithms currently in use are not general, deterministic, or even finite.
An operating system (e.g., Windows), for example, is better thought of as a program that
never terminates rather than as a finite programwith input and output. Algorithmswritten
for more than one processor, whether for a multiprocessor machine or for a distributed
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182 Chapter 4 ◆ Algorithms

environment (such as the internet), are rarely deterministic, for example, because of dif-
ferent execution speeds of the processors. Also, many practical problems are too difficult
to be solved efficiently, and compromises either in generality or correctness are neces-
sary. As an illustration, we present an example that shows the usefulness of allowing an
algorithm to make random decisions, thereby violating the requirement of determinism.

A randomized algorithm does not require that the intermediate results of each
step of execution be uniquely defined and depend only on the inputs and results of the
preceding steps. By definition, when a randomized algorithm executes, at some points
it makes random choices. In practice, a pseudorandom number generator is used (see
Example 3.1.16).

We shall assume the existence of a function rand(i, j), which returns a random
integer between the integers i and j, inclusive. As an example, we describe a random-
ized algorithm that shuffles a sequence of numbers. More precisely, it inputs a sequence
a1, . . . , an and moves the numbers to random positions. Major bridge tournaments use
computer programs to shuffle the cards.

The algorithm first swaps (i.e., interchanges the values of) a1 and arand(1,n). At this
point, the value of a1 might be equal to any one of the original values in the sequence.
Next, the algorithm swaps a2 and arand(2,n). Now the value of a2 might be equal to any
of the remaining values in the sequence. The algorithm continues in this manner until it
swaps an−1 and arand(n−1,n). Now the entire sequence is shuffled.

Algorithm 4.2.4 Shuffle

This algorithm shuffles the values in the sequence

a1, . . . , an.

Input: a, n

Output: a (shuffled)

shuffle(a, n) {
for i = 1 to n − 1

swap(ai, arand(i,n))
}

Example 4.2.5 Suppose that the sequence a

17 9 5 23 21

is input to shuffle. We first swap ai and aj, where i = 1 and j = rand(1, 5). If j = 3, after
the swap we have

5 9 17 23 21

↑
i

↑
j

Next, i = 2. If j = rand(2, 5) = 5, after the swap we have

5 21 17 23 9

↑
i

↑
j
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4.2 ◆ Examples of Algorithms 183

Next, i = 3. If j = rand(3, 5) = 3, the sequence does not change.
Finally, i = 4. If j = rand(4, 5) = 5, after the swap we have

5 21 17 9 23

↑
i

↑
j

Notice that the output (i.e., the rearranged sequence) depends on the random choices
made by the random number generator.

Randomized algorithms can be used to search for nonrandom goals. For example,
a person searching for the exit in a maze could randomly make a choice at each inter-
section. Of course, such an algorithm might not terminate (because of bad choices at the
intersections). In Chapter 8, Graph Theory, we will present a randomized algorithm that
searches for a particular structure in a graph (see Algorithm 8.3.10).

4.2 Problem-Solving Tips

Again, we emphasize that to construct an algorithm, it is often helpful to assume that
you are in the middle of the algorithm and that part of the problem has been solved. In
insertion sort (Algorithm 4.2.3), it was helpful to assume that the subsequence s1, . . . , si
was sorted. Then, all we had to do was insert the next element si+1 in the proper place.
Iterating this procedure yields the algorithm. These observations lead to a loop invariant
that can be used to prove that Algorithm 4.2.3 is correct (see Exercise 14).

4.2 Review Exercises

1. Give examples of searching problems.

2. What is text searching?

3. Describe, in words, an algorithm that solves the text-searching
problem.

4. What does it mean to sort a sequence?

5. Give an example that illustrates why we might want to sort a
sequence.

6. Describe insertion sort in words.

7. What do we mean by the time and space required by an
algorithm?

8. Why is it useful to know or be able to estimate the time and
space required by an algorithm?

9. Why is it sometimes necessary to relax the requirements of an
algorithm as stated in Section 4.1?

10. What is a randomized algorithm?

11. Which requirements of an algorithm as stated in Section 4.1
does a randomized algorithm violate?

12. Describe the shuffle algorithm in words.

13. Give an application of the shuffle algorithm.

4.2 Exercises

1. Trace Algorithm 4.2.1 for the input t = “balalaika” and
p = “bala”.

2. Trace Algorithm 4.2.1 for the input t = “balalaika” and
p = “lai”.

3. Trace Algorithm 4.2.1 for the input t = “000000000” and
p = “001”.

4. Trace Algorithm 4.2.3 for the input 34, 20, 144, 55.

5. Trace Algorithm 4.2.3 for the input 34, 20, 19, 5.

6. Trace Algorithm 4.2.3 for the input 34, 55, 144, 259.

7. Trace Algorithm 4.2.3 for the input 34, 34, 34, 34.

8. Trace Algorithm 4.2.4 for the input 34, 57, 72, 101, 135.
Assume that the values of rand are

rand(1, 5) = 5, rand(2, 5) = 4,

rand(3, 5) = 3, rand(4, 5) = 5.

9. Trace Algorithm 4.2.4 for the input 34, 57, 72, 101, 135.
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Assume that the values of rand are

rand(1, 5) = 2, rand(2, 5) = 5,

rand(3, 5) = 3, rand(4, 5) = 4.

10. Trace Algorithm 4.2.4 for the input 34, 57, 72, 101, 135.
Assume that the values of rand are

rand(1, 5) = 5, rand(2, 5) = 5,

rand(3, 5) = 4, rand(4, 5) = 4.

11. Is it possible that Algorithm 4.2.4 sorts the input
67, 32, 6, 89, 52 in increasing order? If so, show possible val-
ues for rand that perform the sort. It not, prove that Algorithm
4.2.4 cannot sort this input in increasing order.

12. Is it possible that Algorithm 4.2.4 sorts the input
67, 32, 6, 89, 52 in decreasing order? If so, show possible
values for rand that perform the sort. It not, prove that Algo-
rithm 4.2.4 cannot sort this input in decreasing order.

13. Prove that Algorithm 4.2.1 is correct.

14. Prove that Algorithm 4.2.3 is correct.

15. Write an algorithm that returns the index of the first occur-
rence of the value key in the sequence s1, . . . , sn. If key is not
in the sequence, the algorithm returns the value 0. Example:
If the sequence is 12, 11, 12, 23 and key is 12, the algorithm
returns the value 1.

16. Write an algorithm that returns the index of the last occurrence
of the value key in the sequence s1, . . . , sn. If key is not in

the sequence, the algorithm returns the value 0. Example: If
the sequence is 12, 11, 12, 23 and key is 12, the algorithm re-
turns the value 3.

17. Write an algorithmwhose input is a sequence s1, . . . , sn sorted
in nondecreasing order and a value x. (Assume that all the
values are real numbers.) The algorithm inserts x into the se-
quence so that the resulting sequence is sorted in nondecreas-
ing order. Example: If the input sequence is 2, 6, 12, 14 and
x = 5, the resulting sequence is 2, 5, 6, 12, 14.

18. Modify Algorithm 4.2.1 so that it finds all occurrences of
p in t.

19. Describe best-case input for Algorithm 4.2.1.

20. Describe worst-case input for Algorithm 4.2.1.

21. Modify Algorithm 4.2.3 so that it sorts the sequence s1, . . . , sn
in nonincreasing order.

22. The selection sort algorithm sorts the sequence s1, . . . , sn in
nondecreasing order by first finding the smallest item, say si,
and placing it first by swapping s1 and si. It then finds the
smallest item in s2, . . . , sn, again say si, and places it second
by swapping s2 and si. It continues until the sequence is sorted.
Write selection sort in pseudocode.

23. Trace selection sort (see Exercise 22) for the input of
Exercises 4–7.

24. Show that the time for selection sort (see Exercise 22) is the
same for all inputs of size n.

4.3 Analysis of Algorithms
A computer program, even though derived from a correct algorithm, might be useless for
certain types of input because the time needed to run the program or the space needed
to hold the data, program variables, and so on, is too great. Analysis of an algorithm
refers to the process of deriving estimates for the time and space needed to execute the
algorithm. In this section we deal with the problem of estimating the time required to
execute algorithms.

Suppose that we are given a set X of n elements, some labeled “red” and some
labeled “black,” and we want to find the number of subsets of X that contain at least one
red item. Suppose we construct an algorithm that examines all subsets of X and counts
those that contain at least one red item and then implement this algorithm as a computer
program. Since a set that has n elements has 2n subsets (see Theorem 2.4.6), the program
would require at least 2n units of time to execute. It does not matter what the units of
time are—2n grows so fast as n increases (see Table 4.3.1) that, except for small values
of n, it would be impractical to run the program.

Determining the performance parameters of a computer program is a difficult task
and depends on a number of factors such as the computer that is being used, the way
the data are represented, and how the program is translated into machine instructions.
Although precise estimates of the execution time of a program must take such factors
into account, useful information can be obtained by analyzing the time of the underlying
algorithm.

The time needed to execute an algorithm is a function of the input. Usually, it is
difficult to obtain an explicit formula for this function, and we settle for less. Instead of
dealing directly with the input, we use parameters that characterize the size of the input.
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TABLE 4.3.1 ■ Time to Execute an Algorithm if One Step Takes 1 Microsecond to Execute. lg n Denotes log2 n
(the logarithm of n to base 2)

Number of Steps Time to Execute if n =
to Termination

for Input of Size n 3 6 9 12

1 10−6 sec 10−6 sec 10−6 sec 10−6 sec
lg lg n 10−6 sec 10−6 sec 2 × 10−6 sec 2 × 10−6 sec
lg n 2 × 10−6 sec 3 × 10−6 sec 3 × 10−6 sec 4 × 10−6 sec
n 3 × 10−6 sec 6 × 10−6 sec 9 × 10−6 sec 10−5 sec

n lg n 5 × 10−6 sec 2 × 10−5 sec 3 × 10−5 sec 4 × 10−5 sec
n2 9 × 10−6 sec 4 × 10−5 sec 8 × 10−5 sec 10−4 sec
n3 3 × 10−5 sec 2 × 10−4 sec 7 × 10−4 sec 2 × 10−3 sec
2n 8 × 10−6 sec 6 × 10−5 sec 5 × 10−4 sec 4 × 10−3 sec

50 100 1000 10 5 10 6

1 10−6 sec 10−6 sec 10−6 sec 10−6 sec 10−6 sec
lg lg n 2 × 10−6 sec 3 × 10−6 sec 3 × 10−6 sec 4 × 10−6 sec 4 × 10−6 sec
lg n 6 × 10−6 sec 7 × 10−6 sec 10−5 sec 2 × 10−5 sec 2 × 10−5 sec
n 5 × 10−5 sec 10−4 sec 10−3 sec 0.1 sec 1 sec

n lg n 3 × 10−4 sec 7 × 10−4 sec 10−2 sec 2 sec 20 sec
n2 3 × 10−3 sec 0.01 sec 1 sec 3 hr 12 days
n3 0.13 sec 1 sec 16.7 min 32 yr 31,710 yr
2n 36 yr 4 × 1016 yr 3 × 10287 yr 3 × 1030089 yr 3 × 10301016 yr

For example, if the input is a set containing n elements, we would say that the size of the
input is n. We can ask for the minimum time needed to execute the algorithm among all
inputs of size n. This time is called the best-case time for inputs of size n. We can also
ask for the maximum time needed to execute the algorithm among all inputs of size n.
This time is called the worst-case time for inputs of size n. Another important case is
average-case time—the average time needed to execute the algorithm over some finite
set of inputs all of size n.

Since we are primarily concerned with estimating the time of an algorithm rather
than computing its exact time, as long as we count some fundamental, dominating steps
of the algorithm,wewill obtain a useful measure of the time. For example, if the principal
activity of an algorithm is making comparisons, as might happen in a sorting routine, we
might count the number of comparisons. As another example, if an algorithm consists
of a single loop whose body executes in at most C steps, for some constant C, we might
count the number of iterations of the loop.

Example 4.3.1 A reasonable definition of the size of input for Algorithm 4.1.2 that finds the largest
value in a finite sequence is the number of elements in the input sequence. A reasonable
definition of the execution time is the number of iterations of the while loop. With these
definitions, the worst-case, best-case, and average-case times for Algorithm 4.1.2 for
input of size n are each n − 1 since the loop is always executed n − 1 times.

Usually we are less interested in the exact best-case or worst-case time required
for an algorithm to execute than we are in how the best-case or worst-case time grows
as the size of the input increases. For example, suppose that the worst-case time of an
algorithm is

t(n) = 60n2 + 5n + 1

for input of size n. For large n, the term 60n2 is approximately equal to t(n) (see Ta-
ble 4.3.2). In this sense, t(n) grows like 60n2.
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TABLE 4.3.2 ■ Comparing Growth of t(n) with 60n2

n t(n) = 60n2 + 5n + 1 60n2

10 6,051 6,000
100 600,501 600,000

1,000 60,005,001 60,000,000
10,000 6,000,050,001 6,000,000,000

If t(n) measures the worst-case time for input of size n in seconds, then

T(n) = n2 + 5
60

n + 1
60

measures the worst-case time for input of size n in minutes. Now this change of units
does not affect how the worst-case time grows as the size of the input increases but only
the units in which we measure the worst-case time for input of size n. Thus when we
describe how the best-case or worst-case time grows as the size of the input increases,
we not only seek the dominant term [e.g., 60n2 in the formula for t(n)], but we also may
ignore constant coefficients. Under these assumptions, t(n) grows like n2 as n increases.
We say that t(n) is of order n2 and write t(n) = �(n2), which is read “t(n) is theta of
n2.” The basic idea is to replace an expression, such as t(n) = 60n2 + 5n + 1, with a
simpler expression, such as n2, that grows at the same rate as t(n). The formal definitions
follow.

Definition 4.3.2 Let f and g be functions with domain {1, 2, 3, . . .}.
We write

f (n) = O(g(n))

and say that f (n) is of order at most g(n) or f (n) is big oh of g(n) if there exists a positive
constant C1 such that

|f (n)| ≤ C1|g(n)|
for all but finitely many positive integers n.

Go Online
For more on these order
notations, see
goo.gl/ZwpPlu

We write

f (n) = �(g(n))

and say that f (n) is of order at least g(n) or f (n) is omega of g(n) if there exists a positive
constant C2 such that

|f (n)| ≥ C2 |g(n)|
for all but finitely many positive integers n.

We write

f (n) = �(g(n))

and say that f (n) is of order g(n) or f (n) is theta of g(n) if f (n) = O(g(n)) and f (n) =
�(g(n)).

Definition 4.3.2 can be loosely paraphrased as follows: f (n) = O(g(n)) if, except
for a constant factor and a finite number of exceptions, f is bounded above by g. We also
say that g is an asymptotic upper bound for f . Similarly, f (n) = �(g(n)) if, except for
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a constant factor and a finite number of exceptions, f is bounded below by g. We also say
that g is an asymptotic lower bound for f . Also, f (n) = �(g(n)) if, except for constant
factors and a finite number of exceptions, f is bounded above and below by g. We also
say that g is an asymptotic tight bound for f .

According to Definition 4.3.2, if f (n) = O(g(n)), all that we can conclude is that,
except for a constant factor and a finite number of exceptions, f is bounded above by g,
so g grows at least as fast as f . For example, if f (n) = n and g(n) = 2n, then f (n) =
O(g(n)), but g grows considerably faster than f . The statement f (n) = O(g(n)) says
nothing about a lower bound for f . On the other hand, if f (n) = �(g(n)), we can draw
the conclusion that, except for constant factors and a finite number of exceptions, f is
bounded above and below by g, so f and g grow at the same rate. Notice that n = O(2n),
but n �= �(2n).

Example 4.3.3 Since

60n2 + 5n + 1 ≤ 60n2 + 5n2 + n2 = 66n2 for all n ≥ 1,

we may take C1 = 66 in Definition 4.3.2 to obtain

60n2 + 5n + 1 = O(n2).

Since

60n2 + 5n + 1 ≥ 60n2 for all n ≥ 1,

we may take C2 = 60 in Definition 4.3.2 to obtain

60n2 + 5n + 1 = �(n2).

Since 60n2 + 5n + 1 = O(n2) and 60n2 + 5n + 1 = �(n2),

60n2 + 5n + 1 = �(n2).

The method of Example 4.3.3 can be used to show that a polynomial in n of degree
k with nonnegative coefficients is �(nk). [In fact, any polynomial in n of degree k is
�(nk), even if some of its coefficients are negative. To prove this more general result,
the method of Example 4.3.3 has to be modified.]

Theorem 4.3.4 Let

p(n) = aknk + ak−1nk−1 + · · · + a1n + a0

be a polynomial in n of degree k, where each ai is nonnegative. Then

p(n) = �(nk).

Proof We first show that p(n) = O(nk). Let

C1 = ak + ak−1 + · · · + a1 + a0.

Then, for all n,
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p(n) = aknk + ak−1nk−1 + · · · + a1n + a0
≤ aknk + ak−1nk + · · · + a1nk + a0nk

= (ak + ak−1 + · · · + a1 + a0)nk = C1nk.

Therefore, p(n) = O(nk).
Next, we show that p(n) = �(nk). For all n,

p(n) = aknk + ak−1nk−1 + · · · + a1n + a0 ≥ aknk = C2nk,

where C2 = ak. Therefore, p(n) = �(nk).
Since p(n) = O(nk) and p(n) = �(nk), p(n) = �(nk).

Example 4.3.5 In this book, we let lg n denote log2 n (the logarithm of n to the base 2). Since lg n < n
for all n ≥ 1 (see Figure 4.3.1†),

2n + 3 lg n < 2n + 3n = 5n for all n ≥ 1.

Thus,

2n + 3 lg n = O(n).

Also, 2n + 3 lg n ≥ 2n, for all n ≥ 1. Thus,

2n + 3 lg n = �(n).

Therefore,

2n + 3 lg n = �(n).

y

n

1

2

4

8

16

32

64

128

256

1 2 3 4 5 6 7 8 9 10 11 12 13

y 5 2n

y 5 n2

y 5 n

y 5 lg n

y 5 1 

y 5 n lg n

Figure 4.3.1 Growth of some common functions.

†In Figure 4.3.1, the spacing on the y-axis is proportional to the logarithm of the number rather than to the
number itself so that we can plot large y-values against smaller x-values. This y-axis scale is called a logarithmic
scale. On the standard xy-graph, y = n would be a straight line; here it is curved.
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Example 4.3.6 If a > 1 and b > 1 (to ensure that logb a > 0), by the change-of-base formula for
logarithms [Theorem B.37(e)],

logb n = logb a loga n for all n ≥ 1.

Therefore,

logb n ≤ C loga n for all n ≥ 1,

where C = logb a. Thus, logb n = O(loga n).
Also,

logb n ≥ C loga n for all n ≥ 1;

so logb n = �(loga n). Since logb n = O(loga n) and logb n = �(loga n), we conclude
that logb n = �(loga n).

Because logb n = �(loga n), when using asymptotic notation we need not worry
about which number is used as the base for the logarithm function (as long as the base is
greater than 1). For this reason, we sometimes simply write log without specifying the
base.

Example 4.3.7 If we replace each integer 1, 2, . . . , n by n in the sum 1+ 2+ · · · + n, the sum does not
decrease and we have

1 + 2 + · · · + n ≤ n + n + · · · + n = n · n = n2 for all n ≥ 1. (4.3.1)

It follows that

1 + 2 + · · · + n = O(n2).

To obtain a lower bound, we might imitate the preceding argument and replace
each integer 1, 2, . . . , n by 1 in the sum 1 + 2 + · · · + n to obtain

1 + 2 + · · · + n ≥ 1 + 1 + · · · + 1 = n for all n ≥ 1.

In this case we conclude that

1 + 2 + · · · + n = �(n),

and while the preceding expression is true, we cannot deduce a �-estimate for
1+ 2+ · · · + n, since the upper bound n2 and lower bound n are not equal. We must be
craftier in deriving a lower bound.

One way to get a sharper lower bound is to argue as in the previous paragraph, but
first throw away approximately the first half of the terms, to obtain

1 + 2 + · · · + n ≥ �(n + 1)/2� + · · · + (n − 1) + n

≥ �(n + 1)/2� + · · · + �(n + 1)/2� + �(n + 1)/2�
= �n/2��(n + 1)/2� ≥ (n/2)(n/2) = n2

4
(4.3.2)

for all n ≥ 1. We can now conclude that

1 + 2 + · · · + n = �(n2).
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Therefore,

1 + 2 + · · · + n = �(n2).

Example 4.3.8 If k is a positive integer and, as in Example 4.3.7, we replace each integer 1, 2, . . . , n by
n, we have

1k + 2k + · · · + nk ≤ nk + nk + · · · + nk = n · nk = nk+1

for all n ≥ 1; hence

1k + 2k + · · · + nk = O(nk+1).

We can also obtain a lower bound as in Example 4.3.7:

1k + 2k + · · · + nk ≥ �(n + 1)/2�k + · · · + (n − 1)k + nk

≥ �(n + 1)/2�k + · · · + �(n + 1)/2�k + �(n + 1)/2�k
= �n/2��(n + 1)/2�k ≥ (n/2)(n/2)k = nk+1/2k+1

for all n ≥ 1. We conclude that

1k + 2k + · · · + nk = �(nk+1),

and hence

1k + 2k + · · · + nk = �(nk+1).

Notice the difference between the polynomial

aknk + ak−1nk−1 + · · · + a1n + a0

in Theorem 4.3.4 and the expression

1k + 2k + · · · + nk

in Example 4.3.8. A polynomial has a fixed number of terms, whereas the number of
terms in the expression in Example 4.3.8 is dependent on the value of n. Furthermore, the
polynomial in Theorem 4.3.4 is �(nk), but the expression in Example 4.3.8 is �(nk+1).

Our next example gives a theta notation for lg n!.

Example 4.3.9 Use an argument similar to that in Example 4.3.7, to show that lg n! = �(n lg n).

SOLUTION By properties of logarithms, we have

lg n! = lg n + lg(n − 1) + · · · + lg 2 + lg 1

for all n ≥ 1. Since lg is an increasing function,

lg n + lg(n − 1) + · · · + lg 2 + lg 1 ≤ lg n + lg n + · · · + lg n + lg n = n lg n

for all n ≥ 1. We conclude that lg n! = O(n lg n).

For all n ≥ 4, we have

lg n + lg(n − 1) + · · · + lg 2 + lg 1 ≥ lg n + lg(n − 1) + · · · + lg�(n + 1)/2�
≥ lg�(n + 1)/2� + · · · + lg�(n + 1)/2�
= �n/2� lg�(n + 1)/2�

电子
工业
出版
社版
权所
有 

   
   
 盗
版必
究



Johnsonbaugh-50623 book February 3, 2017 14:26
�

� �

�

4.3 ◆ Analysis of Algorithms 191

≥ (n/2) lg(n/2)

= (n/2)[lg n − lg 2]

= (n/2)[(lg n)/2 + ((lg n)/2 − 1)]

≥ (n/2)(lg n)/2

= n lg n/4

[since (lg n)/2 ≥ 1 for all n ≥ 4]. Therefore, lg n! = �(n lg n). It follows that lg n! =
�(n lg n).

Example 4.3.10 Show that if f (n) = �(g(n)) and g(n) = �(h(n)), then f (n) = �(h(n)).

SOLUTION Because f (n) = �(g(n)), there are constants C1 and C2 such that

C1|g(n)| ≤ |f (n)| ≤ C2|g(n)|
for all but finitely many positive integers n. Because g(n) = �(h(n)), there are constants
C3 and C4 such that

C3|h(n)| ≤ |g(n)| ≤ C4|h(n)|
for all but finitely many positive integers n. Therefore,

C1C3|h(n)| ≤ C1|g(n)| ≤ |f (n)| ≤ C2|g(n)| ≤ C2C4|h(n)|
for all but finitely many positive integers n. It follows that f (n) = �(h(n)).

We next define what it means for the best-case, worst-case, or average-case time
of an algorithm to be of order at most g(n).

Definition 4.3.11 If an algorithm requires t(n) units of time to terminate in
the best case for an input of size n and

t(n) = O(g(n)),

we say that the best-case time required by the algorithm is of order at most g(n) or that
the best-case time required by the algorithm is O(g(n)).

If an algorithm requires t(n) units of time to terminate in the worst case for an
input of size n and

t(n) = O(g(n)),

we say that the worst-case time required by the algorithm is of order at most g(n) or that
the worst-case time required by the algorithm is O(g(n)).

If an algorithm requires t(n) units of time to terminate in the average case for an
input of size n and

t(n) = O(g(n)),

we say that the average-case time required by the algorithm is of order at most g(n) or
that the average-case time required by the algorithm is O(g(n)).

By replacing O by � and “at most” by “at least” in Definition 4.3.11, we obtain
the definition of what it means for the best-case, worst-case, or average-case time of
an algorithm to be of order at least g(n). If the best-case time required by an algorithm
is O(g(n)) and �(g(n)), we say that the best-case time required by the algorithm is
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�(g(n)). An analogous definition applies to the worst-case and average-case times of an
algorithm.

Example 4.3.12 Suppose that an algorithm is known to take 60n2+5n+1 units of time to terminate in the
worst case for inputs of size n. We showed in Example 4.3.3 that 60n2+5n+1 = �(n2).
Thus the worst-case time required by this algorithm is �(n2).

Example 4.3.13 Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed.

1. for i = 1 to n
2. for j = 1 to i
3. x = x + 1

SOLUTION First, i is set to 1 and, as j runs from 1 to 1, line 3 is executed one time. Next,
i is set to 2 and, as j runs from 1 to 2, line 3 is executed two times, and so on. Thus the total
number of times line 3 is executed is (see Example 4.3.7) 1+2+· · ·+n = �(n2). Thus
a theta notation for the number of times the statement x = x+ 1 is executed is �(n2).

Example 4.3.14 Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed:

1. i = n
2. while (i ≥ 1) {
3. x = x + 1
4. i = �i/2�
5. }

SOLUTION First, we examine some specific cases. Because of the floor function, the
computations are simplified if n is a power of 2. Consider, for example, the case n = 8.
At line 1, i is set to 8. At line 2, the condition i ≥ 1 is true. At line 3, we execute the
statement x = x + 1 the first time. At line 4, i is reset to 4 and we return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 3, we execute the statement
x = x + 1 the second time. At line 4, i is reset to 2 and we return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 3, we execute the statement
x = x + 1 the third time. At line 4, i is reset to 1 and we return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 3, we execute the statement
x = x + 1 the fourth time. At line 4, i is reset to 0 and we return to line 2.

This time at line 2, the condition i ≥ 1 is false. The statement x = x + 1 was
executed four times.

Now suppose that n is 16. At line 1, i is set to 16. At line 2, the condition i ≥ 1 is
true. At line 3, we execute the statement x = x + 1 the first time. At line 4, i is reset to
8 and we return to line 2. Now execution proceeds as before; the statement x = x + 1 is
executed four more times, for a total of five times.

Similarly, if n is 32, the statement x = x + 1 is executed a total of six times.
A pattern is emerging. Each time the initial value of n is doubled, the statement

x = x+ 1 is executed one more time. More precisely, if n = 2k, the statement x = x+ 1
is executed k + 1 times. Since k is the exponent for 2, k = lg n. Thus if n = 2k, the
statement x = x + 1 is executed 1 + lg n times.

电子
工业
出版
社版
权所
有 

   
   
 盗
版必
究



Johnsonbaugh-50623 book February 3, 2017 14:26
�

� �

�
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If n is an arbitrary positive integer (not necessarily a power of 2), it lies between
two powers of 2; that is, for some k ≥ 1,

2k−1 ≤ n < 2k.

We use induction on k to show that in this case the statement x = x + 1 is executed k
times.

If k = 1, we have

1 = 21−1 ≤ n < 21 = 2.

Therefore, n is 1. In this case, the statement x = x + 1 is executed once. Thus the Basis
Step is proved.

Now suppose that if n satisfies

2k−1 ≤ n < 2k, (4.3.3)

the statement x = x + 1 is executed k times. We must show that if n satisfies

2k ≤ n < 2k+1, (4.3.4)

the statement x = x + 1 is executed k + 1 times.
Suppose that n satisfies (4.3.4). At line 1, i is set to n. At line 2, the condition i ≥ 1

is true. At line 3, we execute the statement x = x+ 1 the first time. At line 4, i is reset to
�n/2� and we return to line 2. Notice that

2k−1 ≤ n/2 < 2k.

Because 2k−1 is an integer, we must also have

2k−1 ≤ �n/2� < 2k.

By the inductive assumption (4.3.3), the statement x = x + 1 is executed k more times,
for a total of k+1 times. The Inductive Step is complete. Therefore, if n satisfies (4.3.3),
the statement x = x + 1 is executed k times.

Suppose that n satisfies (4.3.3). Taking logarithms to the base 2, we have

k − 1 ≤ lg n < k.

Therefore, k, the number of times the statement x = x + 1 is executed, satisfies

lg n < k ≤ 1 + lg n.

Because k is an integer, we must have k ≤ 1+�lg n�. Furthermore, �lg n� < k. It follows
from the last two inequalities that k = 1 + �lg n�. Since 1 + �lg n� = �(lg n), a theta
notation for the number of times the statement x = x + 1 is executed is �(lg n).

Many algorithms are based on the idea of repeated halving. Example 4.3.14 shows
that for size n, repeated halving takes time�(lg n). Of course, the algorithmmay dowork
in addition to the halving that will increase the overall time.

Example 4.3.15 Find a theta notation in terms of n for the number of times the statement x = x + 1 is
executed.
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1. j = n
2. while (j ≥ 1) {
3. for i = 1 to j
4. x = x + 1
5. j = �j/2�
6. }

SOLUTION Let t(n) denote the number of times we execute the statement x = x + 1.
The first time we arrive at the body of the while loop, the statement x = x+1 is executed
n times. Therefore t(n) ≥ n for all n ≥ 1 and t(n) = �(n).

Next we derive a big oh notation for t(n). After j is set to n, we arrive at the while
loop for the first time. The statement x = x+1 is executed n times. At line 5, j is replaced
by �n/2�; hence j ≤ n/2. If j ≥ 1, we will execute x = x + 1 at most n/2 additional
times in the next iteration of the while loop, and so on. If we let k denote the number of
times we execute the body of the while loop, the number of times we execute x = x+ 1
is at most

n + n
2

+ n
4

+ · · · + n
2k−1

.

This geometric sum (see Example 2.4.4) is equal to

n
(
1 − 1

2k
)

1 − 1
2

.

Now

t(n) ≤ n
(
1 − 1

2k
)

1 − 1
2

= 2n
(
1 − 1

2k

)
≤ 2n for all n ≥ 1,

so t(n) = O(n). Thus a theta notation for the number of times we execute x = x + 1
is �(n).

Example 4.3.16 Determine, in theta notation, the best-case, worst-case, and average-case times required
to execute Algorithm 4.3.17, which follows. Assume that the input size is n and that the
run time of the algorithm is the number of comparisons made at line 3. Also, assume
that the n + 1 possibilities of key being at any particular position in the sequence or not
being in the sequence are equally likely.

SOLUTION The best-case time can be analyzed as follows. If s1 = key, line 3 is exe-
cuted once. Thus the best-case time of Algorithm 4.3.17 is �(1).

The worst-case time of Algorithm 4.3.17 is analyzed as follows. If key is not in the
sequence, line 3 will be executed n times, so the worst-case time of Algorithm 4.3.17
is �(n).

Finally, consider the average-case time of Algorithm 4.3.17. If key is found at the
ith position, line 3 is executed i times; if key is not in the sequence, line 3 is executed n
times. Thus the average number of times line 3 is executed is

(1 + 2 + · · · + n) + n
n + 1

.

Now

(1 + 2 + · · · + n) + n
n + 1

≤ n2 + n
n + 1

by (4.3.1)

= n(n + 1)
n + 1

= n.
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Therefore, the average-case time of Algorithm 4.3.17 is O(n). Also,

(1 + 2 + · · · + n) + n
n + 1

≥ n2/4 + n
n + 1

by (4.3.2)

≥ n2/4 + n/4
n + 1

= n
4
.

Therefore the average-case time of Algorithm 4.3.17 is �(n). Thus the average-case
time of Algorithm 4.3.17 is �(n). For this algorithm, the worst-case and average-case
times are both �(n).

Algorithm 4.3.17 Searching an Unordered Sequence

Given the sequence s1, . . . , sn and a value key, this algorithm returns the index of key.
If key is not found, the algorithm returns 0.

Input: s1, s2, . . . , sn, n, and key (the value to search for)

Output: The index of key, or if key is not found, 0

1. linear search(s, n, key) {
2. for i = 1 to n
3. if (key == si)
4. return i // successful search
5. return 0 // unsuccessful search
6. }

Example 4.3.18 Matrix Multiplication and Transitive Relations If A is a matrix, we let Aij denote the
entry in row i, column j. The product of n × n matrices A and B (i.e., A and B have n
rows and n columns) is defined as the n × n matrix C, where

Cij =
n∑

k=1

AikBkj 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Algorithm 4.3.19, which computes the matrix product, is a direct translation of the pre-
ceding definition. Because of the nested loops, it runs in time �(n3).

Recall (see the discussion following Theorem 3.5.6) that we can test whether a
relation R on an n-element set is transitive by squaring its adjacency matrix, say A, and
then comparing A2 with A. The relation R is transitive if and only if, whenever the entry
in row i, column j in A2 is nonzero, the corresponding entry in A is also nonzero. Since
there are n2 entries in A and A2, the worst-case time to compare the entries is �(n2).
Using Algorithm 4.3.19 to compute A2 requires time �(n3). Therefore, the overall time
to test whether a relation on an n-element set is transitive, using Algorithm 4.3.19 to
compute A2, is �(n3).

For many years it was believed that the minimum time to multiply two n×nmatri-
ces was �(n3); thus it was quite a surprise when a more efficient algorithm was discov-
ered. Strassen’s algorithm (see [Johnsonbaugh: Section 5.4]) to multiply two n × n ma-
trices runs in time �(nlg 7). Since lg 7 is approximately 2.807, Strassen’s algorithm runs
in time approximately �(n2.807), which is asymptotically faster than Algorithm 4.3.19.
An algorithm by Coppersmith and Winograd (see [Coppersmith]) runs in time �(n2.376)
and, so, is even asymptotically faster than Strassen’s algorithm. Since the product of
two n × n matrices contains n2 terms, any algorithm that multiplies two n × n matrices
requires time at least �(n2). At the present time, no sharper lower bound is known.
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Algorithm 4.3.19 Matrix Multiplication

This algorithm computes the product C of the n × n matrices A and B directly from
the definition of matrix multiplication.

Input: A,B, n

Output: C, the product of A and B

matrix product(A,B, n) {
for i = 1 to n

for j = 1 to n {
Cij = 0
for k = 1 to n

Cij = Cij + Aik ∗ Bkj

}
return C

}

The constants that are suppressed in the theta notation may be important. Even
if for any input of size n, algorithm A requires exactly C1n time units and algorithm B
requires exactly C2n2 time units, for certain sizes of inputs algorithm Bmay be superior.
For example, suppose that for any input of size n, algorithm A requires 300n units of
time and algorithm B requires 5n2 units of time. For an input size of n = 5, algorithm
A requires 1500 units of time and algorithm B requires 125 units of time, and thus al-
gorithm B is faster. Of course, for sufficiently large inputs, algorithm A is considerably
faster than algorithm B.

A real-world example of the importance of constants in the theta notation is pro-
vided by matrix multiplication. Algorithm 4.3.19, which runs in time �(n3), is typically
used to multiply matrices even though the Strassen and Coppersmith-Winograd algo-
rithms (see Example 4.3.18), which run in times �(n2.807) and �(n2.376), are asymptoti-
cally faster. The constants in the Strassen and Coppersmith-Winograd algorithms are so
large that they are faster than Algorithm 4.3.19 only for very large matrices.

Certain growth functions occur so often that they are given special names, as
shown in Table 4.3.3. The functions in Table 4.3.3, with the exception of �(nk), are
arranged so that if �(f (n)) is above �(g(n)), then f (n) ≤ g(n) for all but finitely many
positive integers n. Thus, if algorithms A and B have run times that are �(f (n)) and
�(g(n)), respectively, and �(f (n)) is above �(g(n)) in Table 4.3.3, then algorithm A is
more time-efficient than algorithm B for sufficiently large inputs.

TABLE 4.3.3 ■ Common
Growth Functions

Theta Form Name

�(1) Constant
�(lg lg n) Log log
�(lg n) Log
�(n) Linear
�(n lg n) n log n
�(n2) Quadratic
�(n3) Cubic
�(nk), k ≥ 1 Polynomial
�(cn), c > 1 Exponential
�(n!) Factorial It is important to develop some feeling for the relative sizes of the functions in

Table 4.3.3. In Figure 4.3.1 we have graphed some of these functions. Another way to
develop some appreciation for the relative sizes of the functions f (n) in Table 4.3.3 is to
determine how long it would take an algorithm to terminate whose run time is exactly
f (n). For this purpose, let us assume that we have a computer that can execute one step in
1 microsecond (10−6 sec). Table 4.3.1 shows the execution times, under this assumption,
for various input sizes. Notice that it is practical to implement an algorithm that requires
2n steps for an input of size n only for very small input sizes. Algorithms requiring n2 or
n3 steps also become impractical to implement, but for relatively larger input sizes. Also,
notice the dramatic improvement that results when wemove from n2 steps to n lg n steps.

A problem that has a worst-case polynomial-time algorithm is considered to have a
“good” algorithm; the interpretation is that such a problem has an efficient solution. Such
problems are called feasible or tractable. Of course, if the worst-case time to solve the
problem is proportional to a high-degree polynomial, the problem can still take a long
time to solve. Fortunately, in many important cases, the polynomial bound has small
degree.
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4.3 ◆ Analysis of Algorithms 197

A problem that does not have a worst-case polynomial-time algorithm is said to be
intractable. Any algorithm, if there is one, that solves an intractable problem is guar-
anteed to take a long time to execute in the worst case, even for modest sizes of the
input.

Certain problems are so hard that they have no algorithms at all. A problem for
which there is no algorithm is said to be unsolvable. A large number of problems are
known to be unsolvable, some of considerable practical importance. One of the earliest
problems to be proved unsolvable is the halting problem: Given an arbitrary program
and a set of inputs, will the program eventually halt?

A large number of solvable problems have an as yet undetermined status; they are
thought to be intractable, but none of them has been proved to be intractable. (Most of
these problems belong to the class of NP-complete problems; see [Johnsonbaugh] for
details.) An example of an NP-complete problem is:

Given a collection C of finite sets and a positive integer k ≤ |C|, does C contain at
least k mutually disjoint sets?

Other NP-complete problems include the traveling-salesperson problem and the
Hamiltonian-cycle problem (see Section 8.3).

NP-complete problems have efficient (i.e., polynomial-time) algorithms to check
whether a proposed solution is, in fact, a solution. For example, given a collection C of
finite sets and k sets in C, it is easy and fast to check whether the k sets are mutually
disjoint. (Just check each pair of sets!) On the other hand, no NP-complete problem is
known to have an efficient algorithm. For example, given a collection C of finite sets,
finding k mutually disjoint sets in C is, in general, difficult and time consuming. NP-
complete problems also have the property that if any one of them has a polynomial-time
algorithm, then all NP-complete problems have polynomial-time algorithms.

4.3 Problem-Solving Tips

■ To derive a big oh notation for an expression f (n) directly, you must find a constant
C1 and a simple expression g(n) (e.g., n, n lg n, n2) such that |f (n)| ≤ C1|g(n)| for
all but finitely many n. Remember you’re trying to derive an inequality, not an
equality, so you can replace terms in f (n) with other terms if the result is larger
(see, e.g., Example 4.3.3).

■ To derive an omega notation for an expression f (n) directly, you must find a con-
stantC2 and a simple expression g(n) such that |f (n)| ≥ C2|g(n)| for all but finitely
many n. Again, you’re trying to derive an inequality so you can replace terms in
f (n) with other terms if the result is smaller (again, see Example 4.3.3).

■ To derive a theta notation, you must derive both big oh and omega notations.
■ Another way to derive big oh, omega, and theta estimates is to use known

results:

Expression Name Estimate Reference

aknk + ak−1nk−1 + · · · Polynomial �(nk) Theorem 4.3.4
+ a1n + a0

1 + 2 + · · · + n Arithmetic Sum (Case k = 1 �(n2) Example 4.3.7
for Next Entry)

1k + 2k + · · · + nk Sum of Powers �(nk+1) Example 4.3.8
lg n! log n Factorial �(n lg n) Example 4.3.9
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■ To derive an asymptotic estimate for the time of an algorithm, count the number
of steps t(n) required by the algorithm, and then derive an estimate for t(n) as
described previously. Algorithms typically contain loops, in which case, deriving
t(n) requires counting the number of iterations of the loops.

4.3 Review Exercises

1. To what does “analysis of algorithms” refer?

2. What is the worst-case time of an algorithm?

3. What is the best-case time of an algorithm?

4. What is the average-case time of an algorithm?

5. Define f (n) = O(g(n)). What is this notation called?

6. Give an intuitive interpretation of how f and g are related if
f (n) = O(g(n)).

7. Define f (n) = �(g(n)). What is this notation called?

8. Give an intuitive interpretation of how f and g are related if
f (n) = �(g(n)).

9. Define f (n) = �(g(n)). What is this notation called?

10. Give an intuitive interpretation of how f and g are related if
f (n) = �(g(n)).

4.3 Exercises

Select a theta notation from Table 4.3.3 for each expression in
Exercises 1–13.

1. 6n + 1 2. 2n2 + 1

3. 6n3 + 12n2 + 1 4. 3n2 + 2n lg n

5. 2 lg n + 4n + 3n lg n 6. 6n6 + n + 4

7. 2 + 4 + 6 + · · · + 2n 8. (6n + 1)2

9. (6n + 4)(1 + lg n) 10.
(n + 1)(n + 3)

n + 2

11.
(n2 + lg n)(n + 1)

n + n2

12. 2 + 4 + 8 + 16 + · · · + 2n

13. lg[(2n)!]

In Exercises 14–16, select a theta notation for f (n) + g(n).

14. f (n) = �(1), g(n) = �(n2)

15. f (n) = 6n3 + 2n2 + 4, g(n) = �(n lg n)

16. f (n) = �(n3/2), g(n) = �(n5/2)

In Exercises 17–26, select a theta notation from among

�(1), �(lg n), �(n), �(n lg n),
�(n2), �(n3), �(2n), or �(n!)

for the number of times the statement x = x + 1 is executed.

17. for i = 1 to 2n
x = x + 1

18. i = 1
while (i ≤ 2n) {

x = x + 1
i = i + 2

}

19. for i = 1 to n
for j = 1 to n

x = x + 1

20. for i = 1 to 2n
for j = 1 to n

x = x + 1

21. for i = 1 to n
for j = 1 to �i/2�

x = x + 1

22. for i = 1 to n
for j = 1 to n

for k = 1 to n
x = x + 1

23. for i = 1 to n
for j = 1 to n

for k = 1 to i
x = x + 1

24. for i = 1 to n
for j = 1 to i

for k = 1 to j
x = x + 1

25. j = n
while (j ≥ 1) {

for i = 1 to j
x = x + 1

j = �j/3�
}

26. i = n
while (i ≥ 1) {

for j = 1 to n
x = x + 1

i = �i/2�
}

27. Find a theta notation for the number of times the statement
x = x + 1 is executed.

i = 2
while (i < n) {

i = i2

x = x + 1
}

28. Let t(n) be the total number of times that i is incremented and j
is decremented in the following pseudocode, where a1, a2, . . .
is a sequence of real numbers.
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i = 1
j = n
while (i < j) {

while (i < j ∧ ai < 0)
i = i + 1

while (i < j ∧ aj ≥ 0)
j = j − 1

if (i < j)
swap(ai, aj)

}
Find a theta notation for t(n).

29. Find a theta notation for the worst-case time required by the
following algorithm:

iskey(s, n, key) {
for i = 1 to n − 1

for j = i + 1 to n
if (si + sj == key)

return 1
else

return 0
}

30. In addition to finding a theta notation in Exercises 1–29, prove
that it is correct.

31. Find the exact number of comparisons (lines 10, 15, 17,
24, and 26) required by the following algorithm when n
is even and when n is odd. Find a theta notation for this
algorithm.

Input: s1, s2, . . . , sn, n

Output: large (the largest item in s1, s2, . . . , sn),
small (the smallest item in s1, s2, . . . , sn)

1. large small(s, n, large, small) {
2. if (n == 1) {
3. large = s1
4. small = s1
5. return
6. }
7. m = 2�n/2�
8. i = 1
9. while (i ≤ m − 1) {

10. if (si > si+1)

11. swap(si, si+1)

12. i = i + 2
13. }
14. if (n > m) {
15. if (sm−1 > sn)
16. swap(sm−1, sn)
17. if (sn > sm)

18. swap(sm, sn)
19. }
20. small = s1
21. large = s2
22. i = 3
23. while (i ≤ m − 1) {

24. if (si < small)
25. small = si
26. if (si+1 > large)
27. large = si+1

28. i = i + 2
29. }
30. }

32. This exercise shows another way to guess a formula for 1 +
2 + · · · + n.

Example 4.3.7 suggests that

1 + 2 + · · · + n = An2 + Bn + C for all n,

for some constants A, B, and C. Assuming that this is true,
plug in n = 1, 2, 3 to obtain three equations in the three un-
knowns A, B, and C. Now solve for A, B, and C. The resulting
formula can now be proved using mathematical induction (see
Section 2.4).

33. Suppose that a > 1 and that f (n) = �(loga n). Show that
f (n) = �(lg n).

34. Show that n! = O(nn).

35. Show that 2n = O(n!).

36. By using an argument like the one shown in Examples 4.3.7–
4.3.9 or otherwise, prove that

∑n
i=1 i lg i = �(n2 lg n).

�37. Show that nn+1 = O(2n
2
).

38. Show that lg(nk + c) = �(lg n) for every fixed k > 0 and
c > 0.

39. Show that if n is a power of 2, say n = 2k, then

k∑
i=0

lg(n/2i) = �(lg2 n).

40. Suppose that f (n) = O(g(n)), and f (n) ≥ 0 and g(n) > 0 for
all n ≥ 1. Show that for some constant C, f (n) ≤ Cg(n) for
all n ≥ 1.

41. State and prove a result for � similar to that for Exercise 40.

42. State and prove a result for � similar to that for Exercises 40
and 41.

Determine whether each statement in Exercises 43–68 is true or
false. If the statement is true, prove it. If the statement is false, give
a counterexample. Assume that the functions f , g, and h take on
only positive values.

43. nn = O(2n)

44. 2 + sin n = O(2 + cos n)

45. (2n)2 = O(n2)

46. (2n)2 = �(n2)

47. (2n)2 = �(n2)

48. 22n = O(2n)

49. 22n = �(2n)
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50. 22n = �(2n)

51. n! = O((n + 1)!)

52. n! = �((n + 1)!)

53. n! = �((n + 1)!)

54. lg(2n)2 = O(lg n2)

55. lg(2n)2 = �(lg n2)

56. lg(2n)2 = �(lg n2)

57. lg 22n = O(lg 2n)

58. lg 22n = �(lg 2n)

59. lg 22n = �(lg 2n)

60. If f (n) = �(h(n)) and g(n) = �(h(n)), then f (n) + g(n) =
�(h(n)).

61. If f (n) = �(g(n)), then cf (n) = �(g(n)) for any c �= 0.

62. If f (n) = �(g(n)), then 2f (n) = �(2g(n)).

63. If f (n) = �(g(n)), then lg f (n) = �(lg g(n)). Assume that
f (n) ≥ 1 and g(n) ≥ 1 for all n = 1, 2, . . . .

64. If f (n) = O(g(n)), then g(n) = O(f (n)).

65. If f (n) = O(g(n)), then g(n) = �(f (n)).

66. If f (n) = �(g(n)), then g(n) = �(f (n)).

67. f (n) + g(n) = �(h(n)), where h(n) = max{f (n), g(n)}
68. f (n) + g(n) = �(h(n)), where h(n) = min{f (n), g(n)}
69. Write out exactly what f (n) �= O(g(n)) means.

70. What is wrong with the following argument that purports to
show that we cannot simultaneously have f (n) �= O(g(n)) and
g(n) �= O(f (n))?

If f (n) �= O(g(n)), then for every C > 0, |f (n)| >

C|g(n)|. In particular, |f (n)| > 2|g(n)|. If g(n) �= O(f (n)),
then for every C > 0, |g(n)| > C|f (n)|. In particular, |g(n)| >

2|f (n)|. But now
|f (n)| > 2|g(n)| > 4|f (n)|.

Cancelling |f (n)| gives 1 > 4, which is a contradiction.
Therefore, we cannot simultaneously have f (n) �= O(g(n))
and g(n) �= O(f (n)).

�71. Find functions f and g satisfying

f (n) �= O(g(n)) and g(n) �= O(f (n)).

�72. Give an example of increasing positive functions f and g de-
fined on the positive integers for which

f (n) �= O(g(n)) and g(n) �= O(f (n)).

�73. Prove that nk = O(cn) for all k = 1, 2, . . . and c > 1.

74. Find functions f , g, h, and t satisfying

f (n) = �(g(n)), h(n) = �(t(n)),

f (n) − h(n) �= �(g(n) − t(n)).

75. Suppose that the worst-case time of an algorithm is �(n).
What is the error in the following reasoning? Since 2n =
�(n), the worst-case time to run the algorithm with input of

size 2n will be approximately the same as the worst-case time
to run the algorithm with input of size n.

76. Does f (n) = O(g(n)) define an equivalence relation on the set
of real-valued functions on {1, 2, . . .}?

77. Does f (n) = �(g(n)) define an equivalence relation on the set
of real-valued functions on {1, 2, . . .}?

78. [Requires the integral]

(a) Show, by consulting the figure, that

1
2

+ 1
3

+ · · · + 1
n

< loge n.

(b) Show, by consulting the figure, that

loge n < 1 + 1
2

+ · · · + 1
n − 1

.

(c) Use parts (a) and (b) to show that

1 + 1
2

+ · · · + 1
n

= �(lg n).

1 2 3 n–1 n... x

y

1
xy 5

79. [Requires the integral] Use an argument like the one shown in
Exercise 78 to show that

nm+1

m + 1
< 1m + 2m + · · · + nm <

(n + 1)m+1

m + 1
,

where m is a positive integer.

80. By using the formula

bn+1 − an+1

b − a
=

n∑
i=0

aibn−i 0 ≤ a < b

or otherwise, prove that

bn+1 − an+1

b − a
< (n + 1)bn 0 ≤ a < b.

81. Take a = 1 + 1/(n + 1) and b = 1 + 1/n in the inequal-
ity of Exercise 80 to prove that the sequence {(1 + 1/n)n} is
increasing.

82. Take a = 1 and b = 1 + 1/(2n) in the inequality of Exercise
80 to prove that

(
1 + 1

2n

)n

< 2
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4.3 ◆ Analysis of Algorithms 201

for all n ≥ 1. Use the preceding exercise to conclude that
(
1 + 1

n

)n

< 4

for all n ≥ 1.
The method used to prove the results of this exercise

and its predecessor is apparently due to Fort in 1862 (see
[Chrystal, vol. II, page 77]).

83. By using the preceding two exercises or otherwise, prove that

1
n

≤ lg(n + 1) − lg n <
2
n

for all n ≥ 1.

84. Use the preceding exercise to prove that

n∑
i=1

1
i

= �(lg n).

(Compare with Exercise 78.)

85. Prove that the sequence {n1/n}∞n=3 is decreasing.

86. Prove that if 0 ≤ a < b, then

bn+1 − an+1

b − a
> (n + 1)an.

87. Find appropriate values for a and b in the inequality in the pre-
ceding exercise to prove that the sequence {(1 − 1/n)n}∞n=1 is
increasing and bounded above by 4/9.

88. By using the result of the preceding exercise, or otherwise,
prove that the sequence {(1 + 1/n)n+1}∞n=1 is decreasing.

89. By using the result of the preceding exercise, or otherwise,
prove that

lg(n + 1) − lg n ≤ 2
n + 1

for all n ≥ 1.

90. What is wrong with the following “proof” that any algorithm
has a run time that is O(n)?

Wemust show that the time required for an input of size
n is at most a constant times n.

Basis Step
Suppose that n = 1. If the algorithm takes C units of time
for an input of size 1, the algorithm takes at most C · 1 units of
time. Thus the assertion is true for n = 1.

Inductive Step
Assume that the time required for an input of size n is at most
C�n and that the time for processing an additional item is C��.
Let C be the maximum of C� and C��. Then the total time re-
quired for an input of size n + 1 is at most

C�n + C�� ≤ Cn + C = C(n + 1).

The Inductive Step has been verified.

By induction, for input of size n, the time required is at
most a constant time n. Therefore, the run time is O(n).

In Exercises 91–96, determine whether the statement is true or
false. If the statement is true, prove it. If the statement is false, give
a counterexample. Assume that f and g are real-valued functions
defined on the set of positive integers and that g(n) �= 0 for n ≥ 1.
These exercises require calculus.

91. If

lim
n→∞

f (n)
g(n)

= 0,

then f (n) = O(g(n)).

92. If

lim
n→∞

f (n)
g(n)

= 0,

then f (n) = �(g(n)).

93. If

lim
n→∞

f (n)
g(n)

= c �= 0,

then f (n) = O(g(n)).

94. If

lim
n→∞

f (n)
g(n)

= c �= 0,

then f (n) = �(g(n)).

95. If f (n) = O(g(n)), then

lim
n→∞

f (n)
g(n)

exists and is equal to some real number.

96. If f (n) = �(g(n)), then

lim
n→∞

f (n)
g(n)

exists and is equal to some real number.

�97. Use induction to prove that

lg n! ≥ n
2
lg

n
2
.

98. [Requires calculus] Let ln x denote the natural logarithm
(loge x) of x. Use the integral to obtain the estimate

n ln n − n ≤
n∑

k=1

ln k = ln n!, n ≥ 1.

99. Use the result of Exercise 98 and the change-of-base formula
for logarithms to obtain the formula

n lg n − n lg e ≤ lg n!, n ≥ 1.

100. Deduce

lg n! ≥ n
2
lg

n
2

from the inequality of Exercise 99.
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Problem-Solving Corner Design and Analysis of an Algorithm

Problem
Develop and analyze an algorithm that returns the
maximum sum of consecutive values in the numeri-
cal sequence s1, . . . , sn. In mathematical notation, the
problem is to find the maximum sum of the form
sj + sj+1 + · · · + si. Example: If the sequence is

27 6 −50 21 −3 14 16 −8 42 33 −21 9,

the algorithm returns 115—the sum of

21 −3 14 16 −8 42 33.

If all the numbers in a sequence are negative, the maxi-
mum sum of consecutive values is defined to be 0. (The
idea is that the maximum of 0 is achieved by taking an
“empty” sum.)

Attacking the Problem
In developing an algorithm, a good way to start is to
ask the question, “How would I solve this problem
by hand?” At least initially, take a straightforward ap-
proach. Here we might just list the sums of all con-
secutive values and pick the largest. For the example
sequence, the sums are as follows:

j

i 1 2 3 4 5 6 7 8 9 10 11 12

1 27
2 33 6
3 −17 −44 −50
4 4 −23 −29 21
5 1 −26 −32 18 −3
6 15 −12 −18 32 11 14
7 31 4 −2 48 27 30 16
8 23 −4 −10 40 19 22 8 −8
9 65 38 32 82 61 64 50 34 42
10 98 71 65 115 94 97 83 67 75 33
11 77 50 44 94 73 76 62 46 54 12 −21
12 86 59 53 103 82 85 71 55 63 21 −12 9

The entry in column j, row i, is the sum sj +
· · · + si. For example, the entry in column 4, row 7, is
48—the sum

s4 + s5 + s6 + s7 = 21 + −3 + 14 + 16 = 48.

By inspection, we find that 115 is the largest sum.

Finding a Solution
We begin by writing pseudocode for the straightfor-
ward algorithm that computes all consecutive sums and
finds the largest:

Input: s1, . . . , sn
Output: max

max sum1(s, n) {
// sumji is the sum sj + · · · + si.
for i = 1 to n {

for j = 1 to i − 1
sumji = sumj,i−1 + si

sumii = si
}

// step through sumji and find the maximum
max = 0
for i = 1 to n

for j = 1 to i
if (sumji > max)

max = sumji

return max
}

The first nested for loops compute the sums
sumji = sj + · · · + si.

The computation relies on the fact that

sumji = sj + · · · + si = sj + · · · + si−1 + si
= sumj,i−1 + si.
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Problem-Solving Corner: Design and Analysis of an Algorithm 203

The second nested for loops step through sumji and find
the largest value.

Since each of the nested for loops takes time
�(n2), max sum1’s time is �(n2).

We can improve the actual time, but not the
asymptotic time, of the algorithm by computing the
maximum within the same nested for loops in which
we compute sumji:

Input: s1, . . . , sn
Output: max

max sum2(s, n) {
// sumji is the sum sj + · · · + si.
max = 0
for i = 1 to n {

for j = 1 to i − 1 {
sumji = sumj,i−1 + si
if (sumji > max)

max = sumji

}
sumii = si
if (sumii > max)

max = sumii

}
return max

}
Since the nested for loops take time �(n2),

max sum2’s time is �(n2). To reduce the asymptotic
time, we need to take a hard look at the pseudocode to
see where it can be improved.

Two key observations lead to improved time. First,
since we are looking only for the maximum sum, there
is no need to record all of the sums; we will store only
the maximum sum that ends at index i. Second, the line

sumji = sumj,i−1 + si

shows how a consecutive sum that ends at index i − 1
is related to a consecutive sum that ends at index i.
The maximum can be computed by using a similar
formula. If sum is the maximum consecutive sum that
ends at index i−1, the maximum consecutive sum that
ends at index i is obtained by adding si to sum pro-
vided that sum + si is positive. (If some sum of con-
secutive terms that ends at index i exceeds sum + si,
we could remove si and obtain a sum of consecutive
terms ending at index i− 1 that exceeds sum, which is
impossible.) If sum+si ≤ 0, themaximum consecutive
sum that ends at index i is obtained by taking no terms
and has value 0. Thus we may compute the maximum
consecutive sum that ends at index i by executing

if (sum + si > 0)
sum = sum + si

else
sum = 0

Formal Solution
Input: s1, . . . , sn

Output: max

max sum3(s, n) {
// max is the maximum sum seen so far.
// After the ith iteration of the for
// loop, sum is the largest consecutive
// sum that ends at index i.
max = 0
sum = 0
for i = 1 to n {

if (sum + si > 0)
sum = sum + si

else
sum = 0

if (sum > max)
max = sum

}
return max

}

Since this algorithm has a single for loop that runs
from 1 to n, max sum3’s time is �(n). The asymptotic
time of this algorithm cannot be further improved. To
find the maximum sum of consecutive values, we must
at least look at each element in the sequence, which
takes time �(n).

Summary of Problem-Solving Techniques
■ In developing an algorithm, a good way to start

is to ask the question, “How would I solve this
problem by hand?”

■ In developing an algorithm, initially take a
straightforward approach.

■ After developing an algorithm, take a close look
at the pseudocode to see where it can be im-
proved. Look at the parts that perform key com-
putations to gain insight into how to enhance the
algorithm’s efficiency.

■ As in mathematical induction, extend a solution
of a smaller problem to a larger problem. (In this
problem, we extended a sum that ends at index
i − 1 to a sum that ends at index i.)
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204 Chapter 4 ◆ Algorithms

■ Don’t repeat computations. (In this problem, we
extended a sum that ends at index i− 1 to a sum
that ends at index i by adding an additional term
rather than by computing the sum that ends at
index i from scratch. This latter method would
have meant recomputing the sum that ends at
index i − 1.)

Comments
According to [Bentley], the problem discussed in this
section is the one-dimensional version of the origi-
nal two-dimensional problem that dealt with pattern

matching in digital images. The original problem was
to find the maximum sum in a rectangular submatrix
of an n × n matrix of real numbers.

Exercises
1. Modify max sum3 so that it computes not only the

maximum sum of consecutive values but also the in-
dexes of the first and last terms of a maximum-sum
subsequence. If there is no maximum-sum subse-
quence (which would happen, for example, if all of
the values of the sequence were negative), the algo-
rithm should set the first and last indexes to zero.

4.4 Recursive Algorithms
A recursive function (pseudocode) is a function that invokes itself. A recursive algo-
rithm is an algorithm that contains a recursive function. Recursion is a powerful, elegant,
and natural way to solve a large class of problems. A problem in this class can be solved
using a divide-and-conquer technique in which the problem is decomposed into prob-
lems of the same type as the original problem. Each subproblem, in turn, is decomposed

Go Online
For more on recursion, see
goo.gl/ZwpPlu

further until the process yields subproblems that can be solved in a straightforward way.
Finally, solutions to the subproblems are combined to obtain a solution to the original
problem.

Example 4.4.1 Recall that if n ≥ 1, n! = n(n − 1) · · · 2 · 1, and 0! = 1. Notice that if n ≥ 2, n factorial
can be written “in terms of itself” since, if we “peel off” n, the remaining product is
simply (n − 1)!; that is,

n! = n(n − 1)(n − 2) · · · 2 ·1 = n ·(n − 1)!.

For example,

5! = 5 ·4 ·3 ·2 ·1 = 5 ·4!.
The equation

n! = n ·(n − 1)!, (4.4.1)

which happens to be true even when n= 1, shows how to decompose the original prob-
lem (compute n!) into increasingly simpler subproblems [compute (n − 1)!, compute
(n − 2)!, . . .] until the process reaches the straightforward problem of computing 0!.
The solutions to these subproblems can then be combined, by multiplying, to solve the
original problem.

For example, the problem of computing 5! is reduced to computing 4!; the problem
of computing 4! is reduced to computing 3!; and so on. Table 4.4.1 summarizes this
process.

TABLE 4.4.1 ■ Decomposing
the Factorial Problem

Problem Simplified Problem

5! 5 ·4!
4! 4 ·3!
3! 3 ·2!
2! 2 ·1!
1! 1 ·0!
0! None

TABLE 4.4.2 ■ Combining
Subproblems of the Factorial
Problem

Problem Solution

0! 1
1! 1 ·0! = 1
2! 2 ·1! = 2
3! 3 ·2! = 3 ·2 = 6
4! 4 ·3! = 4 ·6 = 24
5! 5 ·4! = 5 ·24 = 120

Once the problem of computing 5! has been reduced to solving subproblems, the
solution to the simplest subproblem can be used to solve the next simplest subproblem,
and so on, until the original problem has been solved. Table 4.4.2 shows how the sub-
problems are combined to compute 5!.

Next, we write a recursive algorithm that computes factorials. The algorithm is a
direct translation of equation (4.4.1).
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4.4 ◆ Recursive Algorithms 205

Algorithm 4.4.2 Computing n Factorial

This recursive algorithm computes n!.

Input: n, an integer greater than or equal to 0

Output: n!

1. factorial(n) {
2. if (n == 0)
3. return 1
4. return n ∗ factorial(n − 1)
5. }

We show how Algorithm 4.4.2 computes n! for several values of n. If n = 0, at
line 3 the function correctly returns the value 1.

If n = 1, we proceed to line 4 since n �= 0. We use this function to compute 0!. We
have just observed that the function computes 1 as the value of 0!. At line 4, the function
correctly computes the value of 1!:

n ·(n − 1)! = 1 ·0! = 1 ·1 = 1.

If n = 2, we proceed to line 4 since n �= 0. We use this function to compute 1!. We
have just observed that the function computes 1 as the value of 1!. At line 4, the function
correctly computes the value of 2!:

n ·(n − 1)! = 2 ·1! = 2 ·1 = 2.

If n = 3 we proceed to line 4 since n �= 0. We use this function to compute 2!. We
have just observed that the function computes 2 as the value of 2!. At line 4, the function
correctly computes the value of 3!:

n ·(n − 1)! = 3 ·2! = 3 ·2 = 6.

The preceding arguments may be generalized using mathematical induction to
prove that Algorithm 4.4.2 correctly returns the value of n! for any nonnegative
integer n.

Theorem 4.4.3 Algorithm 4.4.2 returns the value of n!, n ≥ 0.

Proof

Basis Step (n = 0)

We have already observed that if n = 0, Algorithm 4.4.2 correctly returns the value of
0! (1).

Inductive Step

Assume that Algorithm 4.4.2 correctly returns the value of (n − 1)!, n > 0. Now sup-
pose that n is input to Algorithm 4.4.2. Since n �= 0, when we execute the function in
Algorithm 4.4.2 we proceed to line 4. By the inductive assumption, the function cor-
rectly computes the value of (n − 1)!. At line 4, the function correctly computes the
value (n − 1)! ·n = n!.

Therefore, Algorithm 4.4.2 correctly returns the value of n! for every integer
n ≥ 0.
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206 Chapter 4 ◆ Algorithms

If executed by a computer, Algorithm 4.4.2 would typically not be as efficient as
a nonrecursive version because of the overhead of the recursive calls.

There must be some situations in which a recursive function does not invoke itself;
otherwise, it would invoke itself forever. In Algorithm 4.4.2, if n = 0, the function does
not invoke itself. We call the values for which a recursive function does not invoke itself
the base cases. To summarize, every recursive function must have base cases.

We have shown how mathematical induction may be used to prove that a recur-
sive algorithm computes the value it claims to compute. The link between mathematical
induction and recursive algorithms runs deep. Often a proof by mathematical induction
can be considered to be an algorithm to compute a value or to carry out a particular
construction. The Basis Step of a proof by mathematical induction corresponds to the
base cases of a recursive function, and the Inductive Step of a proof by mathematical
induction corresponds to the part of a recursive function where the function calls itself.

In Example 2.4.7, we gave a proof using mathematical induction that, given an
n × n deficient board (a board with one square removed), where n is a power of 2, we
can tile the board with right trominoes (three squares that form an “L”; see Figure 2.4.4).
We now translate the inductive proof into a recursive algorithm to construct a tiling by
right trominoes of an n × n deficient board where n is a power of 2.

Go Online
For a C program implementing
this algorithm, see
goo.gl/rZYmnK

Algorithm 4.4.4 Tiling a Deficient Board with Trominoes

This algorithm constructs a tiling by right trominoes of an n×n deficient board where
n is a power of 2.

Input: n, a power of 2 (the board size); and the location L of the missing
square

Output: A tiling of an n × n deficient board

1. tile(n,L) {
2. if (n == 2) {

// the board is a right tromino T
3. tile with T
4. return
5. }
6. divide the board into four (n/2) × (n/2) boards
7. rotate the board so that the missing square is in the upper-left quadrant
8. place one right tromino in the center // as in Figure 2.4.5

// consider each of the squares covered by the center tromino as
// missing, and denote the missing squares as m1,m2,m3,m4

9. tile(n/2,m1)

10. tile(n/2,m2)

11. tile(n/2,m3)

12. tile(n/2,m4)

13. }

Using themethod of the proof of Theorem 4.4.3, we can prove that Algorithm 4.4.4
is correct (see Exercise 4).

We present one final example of a recursive algorithm.

Example 4.4.5 A robot can take steps of 1 meter or 2 meters. We write an algorithm to calculate the
number of ways the robot can walk n meters. As examples:
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Distance Sequence of Steps Number of Ways to Walk

1 1 1
2 1, 1 or 2 2
3 1, 1, 1 or 1, 2 or 2, 1 3
4 1, 1, 1, 1 or 1, 1, 2 5

or 1, 2, 1 or 2, 1, 1 or 2, 2

Let walk(n) denote the number of ways the robot can walk n meters. We have
observed that walk(1) = 1 and walk(2) = 2. Now suppose that n > 2. The robot can
begin by taking a step of 1 meter or a step of 2 meters. If the robot begins by taking a
1-meter step, a distance of n− 1 meters remains; but, by definition, the remainder of the
walk can be completed in walk(n − 1) ways. Similarly, if the robot begins by taking a
2-meter step, a distance of n − 2 meters remains and, in this case, the remainder of the
walk can be completed in walk(n − 2) ways. Since the walk must begin with either a
1-meter or a 2-meter step, all of the ways to walk n meters are accounted for. We obtain
the formula

walk(n) = walk(n − 1) + walk(n − 2). (4.4.2)

For example,

walk(4) = walk(3) + walk(2) = 3 + 2 = 5.

We can write a recursive algorithm to compute walk(n) by translating equation
(4.4.2) directly into an algorithm. The base cases are n = 1 and n = 2.

Algorithm 4.4.6 Robot Walking

This algorithm computes the function defined by

walk(n) =
⎧
⎨
⎩
1, n = 1
2, n = 2
walk(n − 1) + walk(n − 2) n > 2.

Input: n

Output: walk(n)

walk(n) {
if (n == 1 ∨ n == 2)

return n
return walk(n − 1) + walk(n − 2)

}

Using themethod of the proof of Theorem 4.4.3, we can prove that Algorithm 4.4.6

Go Online
For a C program implementing
this algorithm, see
goo.gl/m754WF

is correct (see Exercise 7).
The sequence walk(1),walk(2),walk(3), . . . , whose values begin 1, 2, 3, 5, 8,

13, . . . , is related to the Fibonacci sequence. The Fibonacci sequence {fn} is definedGo Online
For more on the Fibonacci
sequence, see
goo.gl/ZwpPlu

by the equations

f1 = 1, f2 = 1, fn = fn−1 + fn−2 n ≥ 3.
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Figure 4.4.1 A pine cone. There are
13 clockwise spirals (marked with
white thread) and 8 counterclockwise
spirals (marked with dark thread).
[Photo by the author; pine cone
courtesy of André Berthiaume and
Sigrid (Anne) Settle.]

The Fibonacci sequence begins

1, 1, 2, 3, 5, 8, 13, . . . .

Since walk(1) = f2, walk(2) = f3, and

walk(n) = walk(n − 1) + walk(n − 2), fn = fn−1 + fn−2 for all n ≥ 3,

it follows that

walk(n) = fn+1 for all n ≥ 1.

(The argument can be formalized using mathematical induction; see Exercise 8.)
The Fibonacci sequence is named in honor of Leonardo Fibonacci (ca. 1170–

1250), an Italian merchant and mathematician. The sequence originally arose in a puz-
zle about rabbits (see Exercises 18 and 19). After returning from the Orient in 1202,
Fibonacci wrote his most famous work, Liber Abaci (available in an English translation
by [Sigler]), which, in addition to containing what we now call the Fibonacci sequence,
advocated the use of Hindu-Arabic numerals. This book was one of the main influences
in bringing the decimal number system toWestern Europe. Fibonacci signed much of his
work “Leonardo Bigollo.” Bigollo translates as “traveler” or “blockhead.” There is some
evidence that Fibonacci enjoyed having his contemporaries consider him a blockhead for
advocating the new number system.

The Fibonacci sequence pops up in unexpected places. Figure 4.4.1 shows a pine
cone with 13 clockwise spirals and 8 counterclockwise spirals. Many plants distribute
their seeds as evenly as possible, thus maximizing the space available for each seed. The
pattern in which the number of spirals is a Fibonacci number provides the most even
distribution (see [Naylor, Mitchison]). In Section 5.3, the Fibonacci sequence appears
in the analysis of the Euclidean algorithm.

Example 4.4.7 Use mathematical induction to show that

n∑
k=1

fk = fn+2 − 1 for all n ≥ 1.
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SOLUTION For the basis step (n = 1), we must show that

1∑
k=1

fk = f3 − 1.

Since
∑1

k=1 fk = f1 = 1 and f3 − 1 = 2 − 1 = 1, the equation is verified.
For the inductive step, we assume case n

n∑
k=1

fk = fn+2 − 1

and prove case n + 1

n+1∑
k=1

fk = fn+3 − 1.

Now

n+1∑
k=1

fk =
n∑

k=1

fk + fn+1

= (fn+2 − 1) + fn+1 by the inductive assumption

= fn+1 + fn+2 − 1

= fn+3 − 1.

The last equality is true because of the definition of the Fibonacci numbers:

fn = fn−1 + fn−2 for all n ≥ 3.

Since the basis step and the inductive step have been verified, the given equation is true
for all n ≥ 1.

4.4 Problem-Solving Tips

A recursive function is a function that invokes itself. The key to writing a recursive func-
tion is to find a smaller instance of the problem within the larger problem. For example,
we can compute n! recursively because n! = n ·(n − 1)! for all n ≥ 1. The situation is
analogous to the inductive step in mathematical induction when we must find a smaller
case (e.g., case n) within the larger case (e.g., case n + 1).

As another example, tiling an n × n deficient board with trominoes when n is a
power of 2 can be done recursively because we can find four (n/2) × (n/2) subboards
within the original n×n board. Note the similarity of the tiling algorithm to the inductive
step of the proof that every n × n deficient board can be tiled with trominoes when n is
a power of 2.

To prove a statement about the Fibonacci numbers, use the equation

fn = fn−1 + fn−2 for all n ≥ 3.

The proof will often use mathematical induction and the previous equation (see Exam-
ple 4.4.7).
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210 Chapter 4 ◆ Algorithms

4.4 Review Exercises

1. What is a recursive algorithm?

2. What is a recursive function?

3. Give an example of a recursive function.

4. Explain how the divide-and-conquer technique works.

5. What is a base case in a recursive function?

6. Why must every recursive function have a base case?

7. How is the Fibonacci sequence defined?

8. Give the first four values of the Fibonacci sequence.

4.4 Exercises

1. Trace Algorithm 4.4.2 for n = 4.

2. Trace Algorithm 4.4.4 when n = 4 and the missing square is
the upper-left corner square.

3. Trace Algorithm 4.4.4 when n = 8 and the missing square is
four from the left and six from the top.

4. Prove that Algorithm 4.4.4 is correct.

5. Trace Algorithm 4.4.6 for n = 4.

6. Trace Algorithm 4.4.6 for n = 5.

7. Prove that Algorithm 4.4.6 is correct.

8. Prove that

walk(n) = fn+1 for all n ≥ 1.

9. (a) Use the formulas

s1 = 1, sn = sn−1 + n for all n ≥ 2,

to write a recursive algorithm that computes

sn = 1 + 2 + 3 + · · · + n.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

10. (a) Use the formulas

s1 = 2, sn = sn−1 + 2n for all n ≥ 2,

to write a recursive algorithm that computes

sn = 2 + 4 + 6 + · · · + 2n.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

11. (a) A robot can take steps of 1 meter, 2 meters, or 3 meters.
Write a recursive algorithm to calculate the number of
ways the robot can walk n meters.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

12. Write a recursive algorithm to find the minimum of a finite
sequence of numbers. Give a proof using mathematical induc-
tion that your algorithm is correct.

13. Write a recursive algorithm to find the maximum of a finite
sequence of numbers. Give a proof using mathematical induc-
tion that your algorithm is correct.

14. Write a recursive algorithm that reverses a finite sequence.
Give a proof usingmathematical induction that your algorithm
is correct.

15. Write a nonrecursive algorithm to compute n!.

�16. A robot can take steps of 1 meter or 2 meters. Write an algo-
rithm to list all of the ways the robot can walk n meters.

�17. A robot can take steps of 1 meter, 2 meters, or 3 meters. Write
an algorithm to list all of the ways the robot can walk nmeters.

Exercises 18–36 concern the Fibonacci sequence {fn}.
18. Suppose that at the beginning of the year, there is one pair of

rabbits and that everymonth each pair produces a new pair that
becomes productive after one month. Suppose further that no
deaths occur. Let an denote the number of pairs of rabbits at
the end of the nth month. Show that a1 = 1, a2 = 2, and
an − an−1 = an−2. Prove that an = fn+1 for all n ≥ 1.

19. Fibonacci’s original question was: Under the conditions of
Exercise 18, how many pairs of rabbits are there after one
year? Answer Fibonacci’s question.

20. Show that the number of ways to tile a 2× n board with 1× 2
rectangular pieces is fn+1, the (n + 1)st Fibonacci number.

21. Use mathematical induction to show that

f 2n = fn−1fn+1 + (−1)n+1 for all n ≥ 2.

22. Show that

f 2n = fn−2fn+2 + (−1)n for all n ≥ 3.

23. Show that

f 2n+2 − f 2n+1 = fnfn+3 for all n ≥ 1.

24. Use mathematical induction to show that
n∑

k=1

f 2k = fnfn+1 for all n ≥ 1.

25. Use mathematical induction to show that for all n ≥ 1, fn is
even if and only if n is divisible by 3.

�26. Use mathematical induction to show that

f2n = f 2n+1 − f 2n−1 and f2n+1 = f 2n + f 2n+1 for all n ≥ 2.

27. Use mathematical induction to show that for all n ≥ 6,

fn >

(
3
2

)n−1

.

28. Use mathematical induction to show that for all n ≥ 1,

fn ≤ 2n−1.
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29. Use mathematical induction to show that for all n ≥ 1,

n∑
k=1

f2k−1 = f2n,
n∑

k=1

f2k = f2n+1 − 1.

�30. Use mathematical induction to show that every integer n ≥ 1
can be expressed as the sum of distinct Fibonacci numbers, no
two of which are consecutive.

�31. Show that the representation in Exercise 30 is unique if we do
not allow f1 as a summand.

32. Show that for all n ≥ 2,

fn =
fn−1 +

√
5f 2n−1 + 4(−1)n+1

2
.

Notice that this formula gives fn in terms of one predecessor
rather than two predecessors as in the original definition.

33. Prove that

1 +
n∑

k=1

(−1)k+1

fkfk+1
= fn+2

fn+1
for all n ≥ 1.

34. Define a sequence {gn} as g1 = c1 and g2 = c2 for constants
c1 and c2, and

gn = gn−1 + gn−2

for n ≥ 3. Prove that

gn = g1fn−2 + g2fn−1

for all n ≥ 3.

35. Prove that

n∑
k=1

(−1)kfk = (−1)nfn−1 − 1 for all n ≥ 2.

36. Prove that

n∑
k=1

(−1)kkfk = (−1)n(nfn−1 + fn−3) − 2 for all n ≥ 4.

37. [Requires calculus] Assume the formula for differentiating
products:

d(fg)
dx

= f
dg
dx

+ g
df
dx

.

Use mathematical induction to prove that

dxn

dx
= nxn−1 for n = 1, 2, . . . .

38. [Requires calculus] Explain how the formula gives a recursive
algorithm for integrating logn |x|:∫

logn |x| dx = x logn |x| − n

∫
logn−1 |x| dx.

Give other examples of recursive integration formulas.

Chapter 4 Notes

The first half of [Knuth, 1977] introduces the concept of an algorithm and various mathemat-
ical topics, including mathematical induction. The second half is devoted to data structures.

Most general references on computer science contain some discussion of algorithms.
Books specifically on algorithms are [Aho; Baase; Brassard; Cormen; Johnsonbaugh; Knuth,
1997, 1998a, 1998b; Manber; Miller; Nievergelt; and Reingold]. [McNaughton] contains a
very thorough discussion on an introductory level of what an algorithm is. Knuth’s expository
article about algorithms ([Knuth, 1977]) and his article about the role of algorithms in the
mathematical sciences ([Knuth, 1985]) are also recommended. [Gardner, 1992] contains a
chapter about the Fibonacci sequence.

Chapter 4 Review

Section 4.1
1. Algorithm
2. Properties of an algorithm: Input, output, precision, deter-

minism, finiteness, correctness, generality
3. Trace
4. Pseudocode

Section 4.2
5. Searching
6. Text search
7. Text-search algorithm
8. Sorting

9. Insertion sort
10. Time and space for algorithms
11. Best-case time
12. Worst-case time
13. Randomized algorithm
14. Shuffle algorithm

Section 4.3
15. Analysis of algorithms
16. Worst-case time of an algorithm
17. Best-case time of an algorithm
18. Average-case time of an algorithm
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19. Big oh notation: f (n) = O(g(n))
20. Omega notation: f (n) = �(g(n))
21. Theta notation: f (n) = �(g(n))

Section 4.4
22. Recursive algorithm

23. Recursive function
24. Divide-and-conquer technique
25. Base cases: Situations where a recursive function does not

invoke itself
26. Fibonacci sequence {fn} : f1 = 1, f2 = 1, fn = fn−1 +

fn−2, n ≥ 3

Chapter 4 Self-Test

1. Trace Algorithm 4.1.1 for the values a = 12, b = 3, c = 0.

2. Which of the algorithm properties—input, output, preci-
sion, determinism, finiteness, correctness, generality—if
any, are lacking in the following? Explain.

Input: S (a set of integers), m (an integer)

Output: All finite subsets of S that sum to m

1. List all finite subsets of S and their sums.
2. Step through the subsets listed in 1 and output each

whose sum is m.

3. Trace Algorithm 4.2.1 for the input t = “111011” and
p = “110”.

4. Trace Algorithm 4.2.3 for the input 44, 64, 77, 15, 3.

5. Trace Algorithm 4.2.4 for the input 5, 51, 2, 44, 96.
Assume that the values of rand are

rand(1, 5) = 1, rand(2, 5) = 3, rand(3, 5) = 5,

rand(4, 5) = 5.

6. Write an algorithm that receives as input the distinct num-
bers a, b, and c and assigns the values a, b, and c to the
variables x, y, and z so that x < y < z.

7. Write an algorithm that receives as input the sequence
s1, . . . , sn sorted in nondecreasing order and prints all val-
ues that appear more than once. Example: If the sequence
is 1, 1, 1, 5, 8, 8, 9, 12, the output is 1 8.

8. Write an algorithm that returns true if the values of a, b, and
c are distinct, and false otherwise.

9. Write an algorithm that tests whether two n × n matri-
ces are equal and find a theta notation for its worst-case
time.

Select a theta notation from among �(1), �(n), �(n2), �(n3),
�(n4), �(2n), or �(n!) for each of the expressions in Exercises
10 and 11.

10. 4n3 + 2n − 5

11. 13 + 23 + · · · + n3

12. Select a theta notation from among �(1), �(n), �(n2),
�(n3), �(2n), or �(n!) for the number of times the line
x = x + 1 is executed.

for i = 1 to n
for j = 1 to n

x = x + 1

13. Trace Algorithm 4.4.4 (the tromino tiling algorithm) when
n = 8 and the missing square is four from the left and two
from the top.

Exercises 14–16 refer to the tribonacci sequence {tn} defined by
the equations

t1 = t2 = t3 = 1, tn = tn−1 + tn−2 + tn−3 for all n ≥ 4.

14. Find t4 and t5.

15. Write a recursive algorithm to compute tn, n ≥ 1.

16. Give a proof using mathematical induction that your algo-
rithm for Exercise 15 is correct.

Chapter 4 Computer Exercises

1. Implement Algorithm 4.1.2, finding the largest element in
a sequence, as a program.

2. Implement Algorithm 4.2.1, text search, as a program.

3. Implement Algorithm 4.2.3, insertion sort, as a program.

4. Implement Algorithm 4.2.4, shuffle, as a program.

5. Run shuffle (Algorithm 4.2.4) many times for the same in-
put sequence. How might the output be analyzed to deter-
mine if it is truly “random”?

6. Implement selection sort (see Exercise 22, Section 4.2) as a
program.

7. Compare the running times of insertion sort (Algorithm
4.2.3) and selection sort (see Exercise 22, Section 4.2) for
several inputs of different sizes. Include data sorted in non-
decreasing order, data sorted in nonincreasing order, data
containing many duplicates, and data in random order.

8. Write recursive and nonrecursive programs to compute n!.
Compare the times required by the programs.
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9. Write a program whose input is a 2n × 2n board with one
missing square and whose output is a tiling of the board by
trominoes.

10. Write a program that uses a graphics display to show a tiling
with trominoes of a 2n × 2n board with one square missing.

11. Write a program that tiles with trominoes an n × n board
with one square missing, provided that n �= 5 and 3 does
not divide n.

12. Write recursive and nonrecursive programs to compute the
Fibonacci sequence. Compare the times required by the pro-
grams.

13. A robot can take steps of 1 meter or 2 meters. Write a pro-
gram to list all of the ways the robot can walk n meters.

14. A robot can take steps of 1, 2, or 3 meters. Write a program
to list all of the ways the robot can walk n meters.
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