Lesson 1 Periodic Signals

1.1 Time-Domain Description

The fact that great majority of functions which may usefully be considered as signals are
functions of time lends justification to the treatment of signal theory in terms of time and of
frequency. A periodic signal will therefore be considered to be one which repeats itself exactly
every T seconds, where T is called the period of the signal waveform; the theoretical
treatment of periodic waveforms assumes that this exact repetition is extended throughout all
time, both past and future. In practice, of course, signals do not repeat themselves
indefinitely. Nevertheless, a waveform such as the output voltage of a main rectifier prior to
smoothing does repeat itself very many times, and it analysis as a strictly periodic signal yields
valuable results. ' In other cases, such as the electrocardiogram, the waveform is quasi-
periodic and may usefully be treated as truly periodic for some purpose. It is worth nothing
that a truly repetitive signal is of very little interest in a communication channel, since no
further information is conveyed after the first cycle of the waveform has been received. One of
the main reasons for discussing periodic signals is that a clear understanding of their analysis is
a great help when dealing with periodic and random ones.

A complete time-domain description of such a signal involves specifying its value precise
at every instant of time. In some cases this may be done very simply using mathematical
notation. Fortunately, it is in many cases useful to describe only certain aspects of a signal
waveform, or to represent it by a mathematical formula which is only approximate. The
following aspects might be relevant in particular cases.

(1) the average value of the signal.

(2) the peak value reached by the signal.

(3) the proportion of the total time spent between value a and b.

(4) the period of the signal.

If it is desired to approximate the waveform by a mathematical expression, such as a
polynomial expansion, a Taylor series, or a Fourier series may be used. A polynomial of order
n having the form

f(D) =ao+ait+at* +ast® + - +ar” (1-1
may be used to fit the actual curve at (n+ 1) arbitrary points. The accuracy of fit will
generally improve as number of polynomial terms increases. It should also be noted that the
error figure between the true signal waveform and the polynomial will normally become very
large away from the region of the fitted points, and that the polynomial itself cannot be
periodic. Whereas a polynomial approximation fits the actual waveform at a number of
arbitrary points, the alternative Taylor series approximation provides a good fit to a smooth
continuous waveform in the vicinity of one selected point. The coefficients of the Taylor series
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are chosen to make the series and its derivatives agree with the actual waveform at this point.
The number of terms in the series determines to what order of derivative this agreement will
extend, and hence the accuracy with which series and actual waveform agree in the region of
point chosen. The general form of the Taylor series for approximating a function in the region

of the point is given by

N LA =) P @ =) d (@) B
[ = fla)+&t—a) & + 51 0 + e 2 0 (1-2)

Generally speaking, the fit to the actual waveform is good in the region of the point
chosen, but rapidly deteriorates to either side. The polynomial and Taylor series descriptions
of a signal waveform are therefore only to be recommended when one is concerned to achieve
accuracy over a limited region of the waveform. The accuracy usually decreases rapidly outside
this region, although it may be improved by including additional terms (so long as t lies within
the region of convergence of the series). '”) The approximations provided by such methods are
never periodic in form and cannot therefore be considered ideal for the description of repetitive
signals.

By contrast the Fourier series approximation is well suited to the representation of a
signal waveform over an extended interval. When the signal is periodic, the accuracy of the
Fourier series description is maintained for all time, since the signal is represented as the sum
of a number of sinusoidal functions, which are themselves periodic. Before examining in detail
the Fourier series method of representing a signal, the background to what is known as the

‘frequency-domain’ approach will be introduced.

1.2 Frequency-Domain Description

The basic conception of frequency-domain analysis is that a waveform of any complexity
may be considered as the sum of a number of sinusoidal waveforms of suitable amplitude,
periodicity, and relative phase. ™ A continuous sinusoidal function (sin wt) is thought of as a
‘single frequency’ wave of frequency radians per second, and the frequency-domain
description of a signal involves its breakdown into a number of such basic functions. This is
the method of Fourier analysis.

There are a number of reasons why signal representation in terms of a set of component
sinusoidal waves occupies such a central role in signal analysis. The suitability of a set of
periodic functions for approximating a signal waveform over an extended interval has already
been mentioned, and it will be shown later that the use of such techniques causes the error
between the actual signal and its approximation to be minimized in a certain important sense.
A further reason why sinusoidal functions are so important in signal analysis is that they occur
widely in the physical world and are very susceptible to mathematical treatment; a large and
extremely important class of electrical and mechanical systems, known as ‘linear systems’,
responds sinusoidally when driven by a sinusoidal disturbing function of any frequency. All
these manifestations of sinusoidal function in the physical world suggest that signal analysis in
sinusoidal terms will simplify the problem of relating a signal to underlying physical causes, or
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to the physical properties of a system or device through which it has passed. Finally,
sinusoidal functions form a set of what are called ‘orthogonal function’, the rather special

properties and advantage of which will now be discussed.

1.3 Orthogonal Functions

1.3.1 Vectors and Signals

A discussion of orthogonal functions and of their value for the description of signals may
be conveniently introduced by considering the analogy between vectors and signals. A vector
is specified both by its magnitude and direction, familiar examples being force and velocity.
Suppose we have two V,and V,; geometrically, we define the component of vector V, along
vector V, by constructing the perpendicular form the end of V,onto V,. We then have

V), = CpV,+V. (1-3)

where vector V. is the error in the approximation. Clearly, this error vector is of minimum
length when it is drawn perpendicular to the direction of V,. Thus we say that the component
of vector V; along vector V, is given by C;V,, where C,; is chosen such as to make the error
vector as small as possible. A familiar case of an orthogonal vector system is the use of three
mutually perpendicular axes in co-ordinate geometry.

There basic ideas about the comparison of vectors may be extended to signals. Suppose
we wish to approximate a signal f; (z) by another signal or function f, (z) over a certain
interval #,<t<t,; in other words,

1) ~Cu,f () for v <t<<t
We wish to choose C;; to achieve the best approximation, If we define the error function
[ = f1() —Cyp fo (D) (1-4)

it might appear at first sight that we should choose Cj; so as to minimize the average value of
f.(t) over the chosen interval. The disadvantage of such an error criterion is that large
positive and negative errors occurring at different instants would tend to cancel each other out.
This difficulty is avoided if we choose to minimize the average squared-error, rather than the
error itself (this is equivalent to minimizing the square root of the mean-squared error, or

‘r.m. s’ error). Denoting the average of f2(¢) by e, we have

S S _ 1 "ty B ) , )
g = (lz_zl)Jﬁfe(t)dt (tz_zl)Jll [fl([) Clzfz([):l dt (1-5)

Differentiating with respect to C;; and putting the resulting expression equal to zero gives the

value of Cy, for which is a minimum. ") Thus

I DS B L TSNS
dCi, { (2, *z‘l)ﬁl L1 —Crufo ()] dt} 0

Expanding the bracket and changing the order of integration and differentiating gives

Cy, :Jizfl(t)fz(z‘)dt/szf%(z‘)dt (1-6)

1.3.2 Signal Description by Sets of Orthogonal Function
Suppose that we have approximated a signal f;(z) over a certain interval by the function
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f2(¢) so that the mean square error is minimized, but that we now wish to improve the
approximation. It will be demonstrated that a very attractive approach is to express the signal
in terms of a set of function f, (), f3(t), fi(t), etc. » which are mutually orthogonal.

Suppose the initial approximation is

F1(D) &~ Cp, [>(0) -7
and that the error is further reduced by putting
J1@) = Ci 2 () +Cus f5(D) (1-8)

where f,(z) and f3 (z) are orthogonal over the interval of interest. Now that we have
incorporated the additional term Cy; f5(2), it is interesting to find what the new value of must

be in order that the mean square error is again minimized. We now have

fe(t) :fl([)*Clzfz(lf)*clgfg(t) (1*9)
and the mean square error in the interval ¢, <t<(t, is therefore
= it .J’Z[ﬁ(z)—cM(z)fg(z)—cB(z)fg(z)]Zdz (1-10)
2 1

h
Differentiating partially with respect to Cy, to find the value of Cy, for which the mean square
error is again minimized, and changing the order of differentiation and integration, we have

again -

Cp, = Jffl<z>f2<r>df/Jj2f§<z>dz (1-11)

In order words, the decision to improve the approximation by incorporating an additional term
in does not require us to modify the coefficient, provided that f;(z) is orthogonal to f;(¢) in
the chosen time interval. ") By precisely similar arguments we could show that the value of C;
would be unchanged if the signal was to be approximated by f;(#) alone.

This important result may be extended to cover the representation of a signal in terms of
a whole set of orthogonal functions. The value of any coefficient does not depend upon how
many functions from the complete set are used in the approximation, and is thus unaltered
when further terms are included.™” The use of a set of orthogonal functions for signal
description is analogous to the use of three mutually perpendicular (that is, orthogonal) axes
for the description of a vector in three-dimensional space, and gives rise to the notion of a
“signal space’. ") Accurate signal representation will often require the use of many more than
three orthogonal functions, so that we must think of a signal within some interval ¢;<(t<{t; as
being represented by a point in a multidimensional space.

To summarize, there are a number of sets of orthogonal functions available such as the
so-called Legendre polynomials and Walsh functions for the approximate description of signal
waveform, of which the sinusoidal set is the most widely used. " Sets involving polynomials
in ¢ are not by their very nature periodic, but may sensibly be used to describe one cycle (or
less) of a periodic waveform; outside the chosen interval, errors between the true signal and
its approximation will normally increase rapidly. A description of one cycle of a periodic signal
in terms of sinusoidal function will, however, be equally valid for all time because of the every
member of the orthogonal.
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1.4 The Fourier Series

The basis of the Fourier series is that complex periodic waveform may be analyzed into a
number of harmonically related sinusoidal waves which constitute an orthogonal set. If we
have a periodic signal f(z) with a period equal to T, then f(¢) may be represented by the
series

f@) = A+ DA, cosnwit+ >, B,sinnaw (1-12)

n=1 n=1

where w,=2x/T. Thus f(¢) is considered to be made up by the addition of a steady level A,
to a number of sinusoidal and cosinusoidal waves of different frequencies. The lowest of these
frequencies is w; (radians per second) and is called the ‘fundamental’; waves of this frequency
have a period equal to that of the signal. Frequency 2w, is called the ‘second harmonic’, 3w, is

the ¢ third harmonic’, and so on. Certain restrictions, known as the Dirichlet conditions,
must be placed upon f(z) for the above series to be valid. The integralJ | (&) | dt over a

complete period must be finite, and may not have more than a finite number of discontinuities
in any finite interval. Fortunately, these conditions do not exclude any signal waveform of

practical interest.

1.4.1 Evaluation of the Coefficients
We now turn to the question of evaluating the coefficients A,, A, and B,. Using the
minimum square error criterion described in foregoing text, and writing for the sake of
convenience, we have
Ay = ij“ F()dx
2m) —=
A, = iJ F(Dcosnzdx (1-13)
T T

B, = ir f(x)sinnrdx
TJ—n

Although in the majority of cases it is convenient for the interval of integration to be
symmetrical about the origin, any interval equal in length to one period of the signal waveform
may be chosen.

Many waveforms of practical interest are either even or odd functions of time. If f(z) is
even then by definition f(2)=f(—t), whereas if it is odd f(—t)=—f(). If f(¢) is even and
we multiply it by the odd function sinnw, ¢ the result is also odd. Thus the integrand for every
B, is odd. Now when an odd function is integrated over an interval symmetrical about t=0,
the result is always zero. Hence all the B coefficients are zero and we are left with a series
containing only cosines. By similar arguments, if () is odd the A coefficients must be zero
and we are left with a sine series. It is indeed intuitively clear that an even function can only
be built up from a number of other functions which are themselves even, and vice versa.

We have already seen how the Fourier series is simplified in the case of an even or odd
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function, by losing either its sine or its cosine terms. A different type of simplification occurs
in the case of a waveform possessing what is know as ‘half-wave symmetry’. In mathematical
terms, half-wave symmetry exists when

[ =—fa+7T/2) (1-14)
In other words, any two values of the waveform separated by T/2 will be equal in magnitude
and opposite in sign. Generalizing, only odd harmonics exhibit half~-wave symmetry, and
therefore a waveform of any complexity which has such symmetry cannot contain even
harmonic components. Conversely, a waveform know to contain any second, fourth, or other
harmonic components cannot display half-wave symmetry.

Usually, we have always integrated over a complete cycle to derive the coefficients.
However in the case of an odd or even function it is sufficient, and often simpler, to integrate
over only one half of the cycle and multiply the result by 2. Furthermore if the wave is not
only even or odd but also display half-wave symmetry, it is enough to integrate over one
quarter of a cycle and multiply by 4. These closer limits are adequate in such cases the
function that is being integrated is repetitive, repeating twice within one period when it also

exhibit half-wave symmetry.

1.4.2 Choice of Time Origin, and Waveform Power

The amount of work involved in calculating the Fourier series coefficients for a particular
waveform shape is reduced if the waveform is either even or odd, and this may often be
arranged by a judicious choice of time origin (that is, shift of time origin). ") This shift has
therefore merely had the effect of converting a Fourier series containing only sine terms into
one containing only cosine terms; the amplitude of a component at any one frequency is, as we
would expect, unaltered. For a complicated waveform which is neither even nor odd, it must
be expected to include both sine and cosine terms in its Fourier series.

As the time origin of a waveform is shifted, the various sine and cosine coefficients of its
Fourier series will change, but the sum of the squares of any two coefficients A, and B, will
remain constant, which means that the average power of the waveform, a concept familiar to
electrical engineers, is unaltered.

The above ideas lead naturally to an alternative trigonometric of the Fourier series. If the
two fundamental components of a waveform are

Ajcoswit and Bjsinwt

their sum may be expressed in an alternative form using trigonometric identities

Aicoswit+ Bisinant =+ (A2 + B) COS(anZ_ arctan%)
1

:«/(A%JrBf)sin(wltJrarctan&) (1-15)
1

Thus the sine and cosine components at a particular frequency are expressed as a single cosine
or sine wave together with a phase shift. If this procedure is applied to all harmonic
components of the Fourier series, we get the alternative forms

6



FO = A+ D) Creostnwnt— ) or f(1) = A+ > CosinCne 46, (1-16)

n=1 n=1

where
C, = VA, +B;, ¢, = arctan(B, /A,) ,0, = arctan(A,/B,) (1-17)
Finally, we note that sine the mean power represented by any component wave is
(AT +BD/2=C/2 (1-18)

and the power represented by the term A, is simply A%, the total average waveform power is
equal to
P—A+13C (1-19)
n=1
But P may be expressed as the average value over one period of [ f(¢) ]*,using again the
convention that is considered to represent a voltage waveform applied across a ohm resistor.
Hence

a2 1 e 1 e 2 _
P—m+22ngLJﬂMw (1-20)

n=1
This result is a version of a more general one known as Parseval’s theorem, and shows that
the total waveform power is equal to the sum of the powers represented by its individual
Fourier components. It is, however, important to note that this is only true because the

various component waves are drawn from an orthogonal set.

Words and Expressions

accuracy | 'eekjuresi] n. KiffAtE. WERAE ., FEE

amplitude [ 'eemplitju:d | n. JRIE, (EE

aperiodic [ 'eipiori'odik ] adj. JFJEMIH)

approach [o'proutf] n. # G&) iI; IIE (H); &8, Hik
approximation [ o proksi'meifon | n. iE{E

arbitrary [ 'a:bitreri | adj. {E2=

channel ['tfeenl] n. {Ei8, il

coefficient [ koui'fifont | n. FR%X

convergence [ kon'vodzons | n. I8

conversely [ ken'vesli | adj. #HJZ Y, WY

coordinate [ kou'odinit | n. 2RFE (R)

criterion [ krai'tiorion | n. #p#fE. I

deteriorate [ di'tiorioreit | vi. %Ak, 23R, B1b
differentiate [ |difo'renfieit | vz. 3+e+-+- Ol

dimension [ di'menfon] n. 4%k

Dirichlet conditions — Jk #7555 414

discontinuity [ 'disikonti'nju (:) iti] n. CHE, O3HRE
even [ 'iven ] adj. 1BEUHY



expansion [ iks'peenfon | n. B ()

foregoing [ for'geuin | adj. HiIRHY, FERTHY
geometrical [ dzio'metrikal | adj. JU A=~
half-wave symmetry I 5FFR

harmonical [ ha:'monikal | adj. #&IEH

identity [ai'dentiti] n. fHZEZ

instant [ 'instont | n. BER, KA

integrand [ 'intigreend | n. #FH K%K

integrate [ 'intigreit | vz, Meeeeer L

intuitively [in'tju (2) itivli] adv. EWHL, B
geometry [ d3zi'omitri | n. JL{A[2#

Legendre polynomials  #ji |52 =

linear [ 'linia | adj. £

main [ mein | n. HIE, IR

manifestation [ imeenifes'teifon | n. FI

minimum [ 'minimem | n. fH/MHE. &H/Mb
mutually [ 'mjuitfuali | adv. FHH.H

notation [ neu'teifon] n. f5, L5

odd [od] adj. ZFFELH), BB

ohm [oum | n. MU

order ['odo | n. T, By

origin [ 'oridzin] n. J& &

orthogonal [ o:'6ogonl | adj. 1EACH), B

peak [ pitk| adj. FEht; n. g

periodicity [ piorio'disiti | n. J&HY

perpendicular [ papen'dikjule] adj. FEEM, IEALH
phase [ feiz | n. %

polynomial [ ipolineumjal | adj. ZIH); n. LI
quasi-periodic  {fEJE AR

radian [ 'reidjon] n. HRJE

rectifier [ 'rektifaio ] n. ¥y

resistor [ ri'zisto ] n. FEFHAS

series [ 'sioriz | vt. JEJNBE; n. HIE

set [set] n. &

sinusoidal [ jsaine'soidol | adj. I1E5XHY

susceptible [ so'septobl | adj. UK, 552
symmetry [ 'simitri| 7. XfHK

symmetrical [ si'metrikal | adj. XTERAY, IR
term [tom | n. AIE, CF) I



theorem [ 'Oiorom | n. EHH, BN

time domain 3]

trigonometric [ itrigona'metrik | adj. =fAi%EH
trigonometric identities = ffifE %5

vector [ 'vekto | n. K, [

vice versa [ Z IR

vicinity [ vi'siniti | 7. BffiE

Walsh function 7R /RAF K%L

Notes

. Nevertheless, a waveform such as the output voltage of a main rectifier prior to

smoothing does repeat itself very many times, and it analysis as a strictly periodic
signal yields valuable results.

Ani s AR A A R IE . TR AT, R EEARSIRZ W, K
HAE A 0 G S5 #- A7 0. 2 AR A I (B ) 25

. The accuracy usually decreases rapidly away from this region, although it may be

improved by including additional terms (so long as ¢ lies within the region of
convergence of the series).

TEPT R X Ah s ORG REE H 2 T PR, A ] DU b 78— 28000, il 2 Bl
(R T8 B SRND

The basic conception of frequency-domain analysis is that a waveform of any
complexity may be considered as the sum of a number of sinusoidal waveforms of
suitable amplitude, periodicity, and relative phase.

WIS O3 T R HEAME G 2 . ARAT SR 2 BB R mT LUFE BGVE 22 AT G R Sl S0 A X
FABLAYIE R Z A

. Differentiating with respect to C;; and putting the resulting expression equal to zero

gives the value of Cj;for which ¢ is a minimum.

X CoosRKir . BRIG2ITRRAA 0, Wil IR EI0E e f/M C oo fH.

. Differentiating partially with respect to Ci; to find the value of C;, for which the mean

square error is again minimized, and changing the order of differentiation and
integration, we have again aquation (1-11).

NIRRT RZET R i/ N Cro B et CosRAM BT - PS5 B IR
7. JATHRERIA d-1D,

In order words, the decision to improve the approximation by incorporating an
additional term in does not require us to modify the coefficient C,, provided that
f3(t) is orthogonal to f>(z) in the chosen time interval,
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10.

This important result may be extended to cover the representation of a signal in terms
of a whole set of orthogonal functions. The value of any coefficient does not depend
upon how many functions from the complete set are used in the approximation, and is
thus unaltered when further terms are included.
XA ELE AT DA B MEAC R BEE RN E RGOl TR TE I, AT R EE
HRHEEAGTH T 2/ 0mREBOA R, IPREE & HE 2, X R AU,
The use of a set of orthogonal functions for signal description is analogous to the use
of three mutually perpendicular (that is, orthogonal) axes for the description of a
vector in three-dimensional space, and gives rise to the notion of a ‘signal space’.
FIH— N IEE RBUEREARE S . 80 THE =482 (8] vh AL = A B AH 2 5 A il A ok
. XTI T EEEET .
To summarize, there are a number of sets of orthogonal functions available such as
the so-called Legendre polynomials and Walsh functions for the approximate
description of signal waveform, of which the sinusoidal set is the most widely used.
B AVFZIEAS A v RTS8 . Qs i 1L 2 AR R
PRECSE . IE K BRRRE S H P R Y
The amount of work involved in calculating the Fourier series coefficients for a particular
waveform shape is reduced if the waveform is either even or odd, and this may often be
arranged by a judicious choice of time origin (that is, shift of time origin).
XFF—DEEMBOET S, AR E R ek B Ay s B AT SRR (8 H v 5
FRAONE AT DU S I 2 0 R ] J ok e N H R AR

Exercises

Translate the following passages into English or Chinese.

1.

TR o Rt (AT BRI 22 0 A IS 5 o AT — DA IS S Ha] LU S5 5ok ik,
PR Z I R AR A A 8 iy AR L B8O TR 5 oA B s A
—NERIE BRI A5 T, F AR s B (45 s F = B0 . BRERS
IR T B SEAE SR X LAREAT 0 FSR A% .

WG AN ELE I T L ALY . 3 ZR i R R — I s X R3O 2 O
T TGLZ A IR A A5 T IR w0 MREEURE . RIS Hh 9 — 51 2k H e Hh BLTE
TR wo BYRERUE b BRI IR 1w, BB R BATAR BB o

The Fourier series is a particular type of orthogonal series representation that is very
useful in solving engineering problems, especial communication problems. The
orthogonal functions that are used are either sinusoids, or, equivalently, complex
exponential functions.

For periodic waveforms, the Fourier series representations are valid over all time.
Consequently, the (two-side) spectrum, which depends on the waveshape from t=

—o0 to t=00, may be evaluated in terms of Fourier coefficients.



Reading Material
Underwater Acoustic Signals

In the operation of a sonar system the operator is repeatedly faced with the problem of
detecting a signal which is obscured by noise. This signal may be an echo resulting from a
transmitted signal over which the operator has some control, or it may have its origin in some
external source. These two modes of operation are commonly distinguished as active and
passive sonar, respectively. Similar situations arise in radar surveillance and in disciplines for
techniques and for illustrations of the basic principles.

Since there are many ways in which one can think about signal detection, it is desirable to
define a term to denote special cases. The word detection will be used when the question to be
answered is, ‘Are one or more signals present?” when the system is designed to provide an
answer to this question, either deterministic or probabilistic, one speaks of hypothesis
testing. The case of a single signal occurs so often that many systems are designed to provide
only two answers, ‘Yes, a signal is present,” or ‘No, there is no signal. > One can make the
problem more complicated by endeavoring to classify the signal into categories. Decisions of
this latter kind will be referred to as target classification.

Normally a piece of detection equipment is designed to operate in a fixed mode and the
parameters such as integrating time of rectifier circuits or persistence of the oscilloscope tube
for visual detection cannot be changed readily. There will always be some uncertain signals,
which the observer will be hesitant to reject or accept. In these cases the operator might have
the feeling that if the integrating time of the detector or the persistence of the oscilloscope
tube were longer, he could reach a decision about the existence of the signal. Wald (1950) has
formulated this intuitive feeling into a theory of detection. When one is able to vary
deliberately the interval over which one stores data in the reception system in order to achieve
a certain level of certainty, one speaks of sequential detection.

Frequently it is desirable to determine not only the presence or absence of the signal but
also one or more parameters associated with the signal. The parameters of interest can vary
widely from a simple quantity such as time of arrival or target bearing to the recovery of the
complete waveform. When a system is designed to recover one or more parameters associated
with the signal, one speaks of signal extraction.

The word signal was not defined and it was assumed that the reader had an intuitive
felling for the word. Some elaboration may be in order since the definition of signal as
subjective and depends on the application. One may say that ‘signal’ is what one wants to
observe and noise is anything that obscures the observation. Thus, a tuna fisherman who is
searching the ocean with the aid of sonar equipment will be overjoyed with sounds that are
impairing the performance of a nearby sonar system engaged in tracking a submarine. Quite
literally, one man’s signal is another man’s noise.
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Signals come in all shapes and forms. In active sonar system one may use simple
sinusoidal signals of fixed duration and modulations thereof. There are impulsive signals such
as those made with explosions or thumpers. At the other extreme one may make use of
pseudorandom signals. In passive systems, the signals whose detection is sought may be noise
in the conventional meaning of the word; noise produced by propellers or underwater
swimmers, for example. It should be evident that one of our problem will be the formulation
of mathematical techniques that can be used to describe the signal.

Although the source in an active sonar search system may be designed to transmit a signal
known shape, there is no guarantee that the return signal whose detection is sought will be
similar. In fact, there are many factors to change the signal. The amplitude loss associated
with inverse spherical spreading is most unfortunate for the detection system nut it does not
entail any distortion of the wave shape. (Incidentally, this happy state of affairs does not
apply to two-dimensional waves except in the far field where the wave can be approximated
locally as a plane wave. ) The acoustic medium has an attenuation factor, which depends on
the frequency. This produces a slight distortion of the wave shape and a corresponding change
in the energy spectrum of the pulse. The major changes in the waveform result from acoustic
boundaries and inhomogeneities in the medium.

When echoes are produced by extended targets such as submarines, there are two distinct
ways in which the echo structure is affected. First, there is the interference between
reflections from the different leads to a target strength that fluctuates rapidly with changes in
the aspect. Secondly, there is the elongation of the composite echo due to the distribution of
reflecting features along the submarines. This means that the duration of the composite echo
is dependent in a simple manner on the aspect angle. If T is the duration of the echo from a
point scatterer, and L is the length of the submarine, the duration of the returned echo will be
T+ (2L/C)cosf, where § is the acute angle between the major axis of the submarine and the
line joining the source and the submarine. C is the velocity of sound in the water. Of course,
Lcosf must be replaced by the beam width of the submarine when 0 is near.

A final source of pulse distortion is the Doppler shifts produced by the relative motions
between the source, the medium, the bottom, and the targets. Since the source, the medium,
and the target (or detector in passive listening) may each have a different vector velocity

relative to the bottom, the variety of effects may be quite large.
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