

Chapter 1
Introduction to Computers and C++

Man is still the most extraordinary computer of all.
—John F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

How wonderful it is that nobody need wait a single moment before starting to improve the world.
—Anne Frank

Objectives
In this chapter you’ll learn:
■ Exciting recent developments in the computer field.
■ Computer hardware, software and networking basics.
■ The data hierarchy.
■ The different types of programming languages.
■ Basic object-technology concepts.
■ Some basics of the Internet and the World Wide Web.
■ A typical C++ program-development environment.
■ To test-drive a C++ application.
■ Some key recent software technologies.
■ How computers can help you make a difference.

Outline
1.1 Introduction
1.2 Computers and the Internet in Industry and Research
1.3 Hardware and Software
 1.3.1 Moore’s Law
 1.3.2 Computer Organization
1.4 Data Hierarchy
1.5 Machine Languages, Assembly Languages and High-Level Languages
1.6 C++
1.7 Programming Languages
1.8 Introduction to Object Technology
1.9 Typical C++ Development Environment
1.10 Test-Driving a C++ Application
1.11 Operating Systems
 1.11.1 Windows—A Proprietary Operating System
 1.11.2 Linux—An Open-Source Operating System
 1.11.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and iPod Touch® Devices

2 C++ How to Program, Ninth Edition

 1.11.4 Google’s Android
1.12 The Internet and World Wide Web
1.13 Some Key Software Development Terminology
1.14 C++11 and the Open Source Boost Libraries
1.15 Keeping Up to Date with Information Technologies
1.16 Web Resources
Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference | Making a

Difference Resources

1.1 Introduction

Welcome to C++—a powerful computer programming language that’s appropriate for technically oriented
people with little or no programming experience, and for experienced programmers to use in building
substantial information systems. You’re already familiar with the powerful tasks computers perform. Using this
textbook, you’ll write instructions commanding computers to perform those kinds of tasks. Software (i.e., the
instructions you write) controls hardware (i.e., computers).

You’ll learn object-oriented programming—today’s key programming methodology. You’ll create many
software objects that model things in the real-world.

C++ is one of today’s most popular software development languages. This text provides an introduction to
programming in C++11—the latest version standardized through the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC).

In use today are more than a billion general-purpose computers and billions more cell phones, smartphones
and handheld devices (such as tablet computers). According to a study by eMarketer, the number of mobile
Internet users will reach approximately 134 million by 2013.① Smartphone sales surpassed personal computer
sales in 2011.② Tablet sales are expected to account for over 20% of all personal computer sales by 2015.③ By
2014, the smartphone applications market is expected to exceed $40 billion.④ This explosive growth is creating
significant opportunities for programming mobile applications.

1.2 Computers and the Internet in Industry and Research
These are exciting times in the computer field. Many of the most influential and successful businesses of the last

two decades are technology companies, including Apple, IBM, Hewlett Packard, Dell, Intel, Motorola, Cisco,
Microsoft, Google, Amazon, Facebook, Twitter, Groupon, Foursquare, Yahoo!, eBay and many more. These
companies are major employers of people who study computer science, computer engineering, information systems or
related disciplines. At the time of this writing, Apple was the most valuable company in the world. Figure 1.1 provides
a few examples of the ways in which computers are improving people’s lives in research, industry and society.

Name Description

Electronic health records

These might include a patient's medical history, prescriptions, immunizations, lab results, allergies,
insurance information and more. Making this information available to health care providers across a
secure network improves patient care, reduces the probability of error and increases overall efficiency
of the health care system.

① www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/.
② www.mashable.com/2012/02/03/smartphone-sales-overtake-pcs/.
③ www.forrester.com/ER/Press/Release/0,1769,1340,00.html.
④ Inc., December 2010/January 2011, pages 116–123.

Chapter 1 Introduction to Computers and C++ 3

Name Description

Human Genome Project

The Human Genome Project was founded to identify and analyze the 20,000+ genes in human DNA.
The project used computer programs to analyze complex genetic data, determine the sequences of the
billions of chemical base pairs that make up human DNA and store the information in databases which
have been made available over the Internet to researchers in many fields.

AMBER™ Alert

The AMBER (America’s Missing: Broadcast Emergency Response) Alert System is used to find
abducted children. Law enforcement notifies TV and radio broadcasters and state transportation
officials, who then broadcast alerts on TV, radio, computerized highway signs, the Internet and wireless
devices. AMBER Alert recently partnered with Facebook, whose users can “Like” AMBER Alert pages
by location to receive alerts in their news feeds.

World Community Grid

People worldwide can donate their unused computer processing power by installing a free secure
software program that allows the World Community Grid (www.worldcommunitygrid.org) to
harness unused capacity. This computing power, accessed over the Internet, is used in place of
expensive supercomputers to conduct scientific research projects that are making a difference—
providing clean water to third-world countries, fighting cancer, growing more nutritious rice for regions
fighting hunger and more.

Cloud computing

Cloud computing allows you to use software, hardware and information stored in the “cloud”—i.e.,
accessed on remote computers via the Internet and available on demand—rather than having it stored
on your personal computer. These services allow you to increase or decrease resources to meet your
needs at any given time, so they can be more cost effective than purchasing expensive hardware to
ensure that you have enough storage and processing power to meet your needs at their peak levels.
Using cloud computing services shifts the burden of managing these applications from the business to
the service provider, saving businesses money.

Medical imaging

X-ray computed tomography (CT) scans, also called CAT (computerized axial tomography) scans, take
X-rays of the body from hundreds of different angles. Computers are used to adjust the intensity of the
X-rays, optimizing the scan for each type of tissue, then to combine all of the information to create a 3D
image. MRI scanners use a technique called magnetic resonance imaging, also to produce internal
images non-invasively.

GPS

Global Positioning System (GPS) devices use a network of satellites to retrieve location-based
information. Multiple satellites send timestamped signals to the GPS device, which calculates the
distance to each satellite based on the time the signal left the satellite and the time the signal arrived.
This information is used to determine the exact location of the device. GPS devices can provide
step-by-step directions and help you locate nearby businesses (restaurants, gas stations, etc.) and points
of interest. GPS is used in numerous location-based Internet services such as check-in apps to help you
find your friends (e.g., Foursquare and Facebook), exercise apps such as RunKeeper that track the time,
distance and average speed of your outdoor jog, dating apps that help you find a match nearby and apps
that dynamically update changing traffic conditions.

Robots

Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba vacuuming robot), entertainment (e.g.,
robotic pets), military combat, deep sea and space exploration (e.g., NASA’s Mars rover Curiosity) and
more. RoboEarth (www.roboearth.org) is “a World Wide Web for robots.” It allows robots to learn
from each other by sharing information and thus improving their abilities to perform tasks, navigate,
recognize objects and more.

E-mail, Instant Messaging,
Video Chat and FTP

Internet-based servers support all of your online messaging. E-mail messages go through a mail server
that also stores the messages. Instant Messaging (IM) and Video Chat apps, such as AIM, Skype,
Yahoo! Messenger, Google Talk, Trillian, Microsoft’s Messenger and others allow you to communicate
with others in real time by sending your messages and live video through servers. FTP (file transfer
protocol) allows you to exchange files between multiple computers (e.g., a client computer such as your
desktop and a file server) over the Internet.

Internet TV

Internet TV set-top boxes (such as Apple TV, Google TV and TiVo) allow you to access an enormous
amount of content on demand, such as games, news, movies, television shows and more, and they help
ensure that the content is streamed to your TV smoothly.

4 C++ How to Program, Ninth Edition

Name Description

Streaming music services

Streaming music services (such as Pandora, Spotify, Last.fm and more) allow you listen to large
catalogues of music over the web, create customized “radio stations” and discover new music based on
your feedback.

Game programming

Analysts expect global video game revenues to reach $91 billion by 2015 (www.vg247.com/2009/

06/23/global-industry-analysts-predicts-gaming-market-to-reach-91-billion-by-

2015/). The most sophisticated games can cost as much as $100 million to develop. Activision’s Call
of Duty: Black Ops—one of the best-selling games of all time—earned $360 million in just one day
(www.forbes.com/sites/insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-

selling-video-game-of-all-time/)! Online social gaming, which enables users worldwide to
compete with one another over the Internet, is growing rapidly. Zynga—creator of popular online
games such as Words with Friends, CityVille and others—was founded in 2007 and already has over
300 million monthly users. To accommodate the growth in traffic, Zynga is adding nearly 1,000 servers
each week (techcrunch.com/2010/09/22/zynga-moves-1-petabyte-of-data-daily-adds-

1000-servers-a-week/)!

Fig. 1.1 | A few uses for computers.

1.3 Hardware and Software

Computers can perform calculations and make logical decisions phenomenally faster than human beings can.
Many of today’s personal computers can perform billions of calculations in one second—more than a human
can perform in a lifetime. Supercomputers are already performing thousands of trillions (quadrillions) of
instructions per second! IBM’s Sequoia supercomputer can perform over 16 quadrillion calculations per second
(16.32 petaflops)!① To put that in perspective, the IBM Sequoia supercomputer can perform in one second
about 1.5 million calculations for every person on the planet! And—these “upper limits” are growing quickly!

Computers process data under the control of sequences of instructions called computer programs. These
programs guide the computer through ordered actions specified by people called computer programmers. The
programs that run on a computer are referred to as software. In this book, you’ll learn a key programming
methodology that’s enhancing programmer productivity, thereby reducing software development
costs—object-oriented programming.

A computer consists of various devices referred to as hardware (e.g., the keyboard, screen, mouse, hard
disks, memory, DVD drives and processing units). Computing costs are dropping dramatically, owing to rapid
developments in hardware and software technologies. Computers that might have filled large rooms and cost
millions of dollars decades ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a
few dollars each. Ironically, silicon is one of the most abundant materials on Earth—it’s an ingredient in
common sand. Silicon-chip technology has made computing so economical that computers have become a
commodity.

1.3.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services. The opposite has
been the case in the computer and communications fields, especially with regard to the costs of hardware
supporting these technologies. For many decades, hardware costs have fallen rapidly. Every year or two, the
capacities of computers have approximately doubled inexpensively. This remarkable trend often is called

① www.top500.org.

Chapter 1 Introduction to Computers and C++ 5

Moore’s Law, named for the person who identified it in the 1960s, Gordon Moore, co-founder of Intel—the
leading manufacturer of the processors in today’s computers and embedded systems. Moore’s Law and related
observations apply especially to the amount of memory that computers have for programs, the amount of
secondary storage (such as disk storage) they have to hold programs and data over longer periods of time, and
their processor speeds—the speeds at which computers execute their programs (i.e., do their work). Similar
growth has occurred in the communications field, in which costs have plummeted as enormous demand for
communications bandwidth (i.e., information-carrying capacity) has attracted intense competition. We know of
no other fields in which technology improves so quickly and costs fall so rapidly. Such phenomenal
improvement is truly fostering the Information Revolution.

1.3.2 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided into various logical
units or sections (Fig. 1.2).

Logical unit Description

Input unit

This “receiving” section obtains information (data and computer programs) from input devices and places
it at the disposal of the other units for processing. Most information is entered into computers through
keyboards, touch screens and mouse devices. Other forms of input include receiving voice commands,
scanning images and barcodes, reading from secondary storage devices (such as hard drives, DVD drives,
Blu-ray Disc™ drives and USB flash drives—also called “thumb drives” or “memory sticks”), receiving
video from a webcam and having your computer receive information from the Internet (such as when you
stream videos from YouTube™ or download e-books from Amazon). Newer forms of input include
position data from a GPS device, and motion and orientation information from an accelerometer in a
smartphone or game controller (such as Microsoft® Kinect™, Wii™ Remote and Sony’s PlayStation®

Move).
Output unit

This “shipping” section takes information that the computer has processed and places it on various output
devices to make it available for use outside the computer. Most information that’s output from computers
today is displayed on screens, printed on paper (“going green” discourages this), played as audio or video
on PCs and media players (such as Apple’s popular iPods) and giant screens in sports stadiums, transmitted
over the Internet or used to control other devices, such as robots and “intelligent” appliances.

Memory unit

This rapid-access, relatively low-capacity “warehouse” section retains information that has been entered
through the input unit, making it immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the output unit. Information in the
memory unit is volatile—it’s typically lost when the computer’s power is turned off. The memory unit is
often called either memory or primary memory. Main memories on desktop and notebook computers
commonly contain as much as 16 GB (GB stands for gigabytes; a gigabyte is approximately one billion
bytes).

Arithmetic and logic
unit (ALU)

This “manufacturing” section performs calculations, such as addition, subtraction, multiplication and
division. It also contains the decision mechanisms that allow the computer, for example, to compare two
items from the memory unit to determine whether they’re equal. In today’s systems, the ALU is usually
implemented as part of the next logical unit, the CPU.

Central processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of the other sections. The CPU
tells the input unit when information should be read into the memory unit, tells the ALU when
information from the memory unit should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s computers have multiple
CPUs and, hence, can perform many operations simultaneously. A multi-core processor implements
multiple processors on a single integrated-circuit chip—a dual-core processor has two CPUs and a
quad-core processor has four CPUs. Today’s desktop computers have processors that can execute
billions of instructions per second.

6 C++ How to Program, Ninth Edition

Logical unit Description

Secondary storage
unit

This is the long-term, high-capacity “warehousing” section. Programs or data not actively being used by the other
units normally are placed on secondary storage devices (e.g., your hard drive) until they’re again needed, possibly
hours, days, months or even years later. Information on secondary storage devices is persistent—it’s preserved
even when the computer’s power is turned off. Secondary storage information takes much longer to access than
information in primary memory, but the cost per unit of secondary storage is much less than that of primary
memory. Examples of secondary storage devices include CD drives, DVD drives and flash drives, some of which
can hold up to 768 GB. Typical hard drives on desktop and notebook computers can hold up to 2 TB (TB stands
for terabytes; a terabyte is approximately one trillion bytes).

Fig. 1.2 | Logical units of a computer.

1.4 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more complex in structure
as we progress from bits to characters to fields, and so on. Figure 1.3 illustrates a portion of the data hierarchy.
Figure 1.4 summarizes the data hierarchy’s levels.

Fig. 1.3 | Data hierarchy.

Level Description

Bits

The smallest data item in a computer can assume the value 0 or the value 1. Such a data item is called a bit (short
for “binary digit”—a digit that can assume one of two values). It’s remarkable that the impressive functions
performed by computers involve only the simplest manipulations of 0s and 1s—examining a bit’s value, setting a
bit’s value and reversing a bit’s value (from 1 to 0 or from 0 to 1).

Characters

It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to work with decimal
digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %, &, *, (,), –, +, ", :, ? and /). Digits, letters
and special symbols are known as characters. The computer’s character set is the set of all the characters used to
write programs and represent data items. Computers process only 1s and 0s, so every character is represented as a
pattern of 1s and 0s. The Unicode® character set contains characters for many of the world’s languages. C++
supports several character sets, including 16-bit Unicode® characters that are composed of two bytes, each
composed of eight bits. See Appendix B for more information on the ASCII (American Standard Code for
Information Interchange) character set—the popular subset of Unicode that represents uppercase and lowercase
letters, digits and some common special characters.

Chapter 1 Introduction to Computers and C++ 7

Level Description

Fields

Just as characters are composed of bits, fields are composed of characters or bytes. A field is a group of characters
or bytes that conveys meaning. For example, a field consisting of uppercase and lowercase letters could be used to
represent a person’s name, and a field consisting of decimal digits could represent a person’s age.

Records

Several related fields can be used to compose a record. In a payroll system, for example, the record for an
employee might consist of the following fields (possible types for these fields are shown in parentheses):
• Employee identification number (a whole number)
• Name (a string of characters)
• Address (a string of characters)
• Hourly pay rate (a number with a decimal point)
• Year-to-date earnings (a number with a decimal point)
• Amount of taxes withheld (a number with a decimal point)
Thus, a record is a group of related fields. In the preceding example, all the fields belong to the same employee. A
company might have many employees and a payroll record for each one.

Files

A file is a group of related records. [Note: More generally, a file contains arbitrary data in arbitrary formats. In
some operating systems, a file is viewed simply as a sequence of bytes—any organization of the bytes in a file, such
as organizing the data into records, is a view created by the application programmer.] It’s not unusual for an
organization to have many files, some containing billions, or even trillions, of characters of information.

Database

A database is an electronic collection of data that’s organized for easy access and manipulation. The most popular
database model is the relational database in which data is stored in simple tables. A table includes records and
fields. For example, a table of students might include first name, last name, major, year, student ID number and
grade point average. The data for each student is a record, and the individual pieces of information in each record
are the fields. You can search, sort and manipulate the data based on its relationship to multiple tables or databases.
For example, a university might use data from the student database in combination with databases of courses,
on-campus housing, meal plans, etc.

Fig. 1.4 | Levels of the data hierarchy.

1.5 Machine Languages, Assembly Languages and High-Level
 Languages

Programmers write instructions in various programming languages, some directly understandable by computers
and others requiring intermediate translation steps.

Machine Languages
Any computer can directly understand only its own machine language (also called machine code), defined by
its hardware architecture. Machine languages generally consist of numbers (ultimately reduced to 1s and 0s).
Such languages are cumbersome for humans.

Assembly Languages
Programming in machine language was simply too slow and tedious for most programmers. Instead, they began
using English-like abbreviations to represent elementary operations. These abbreviations formed the basis of
assembly languages. Translator programs called assemblers were developed to convert assembly-language
programs to machine language. Although assembly-language code is clearer to humans, it’s incomprehensible
to computers until translated to machine language.

High-Level Languages
To speed up the programming process further, high-level languages were developed in which single statements
could be written to accomplish substantial tasks. High-level languages, such as C++, Java, C# and Visual Basic,
allow you to write instructions that look more like everyday English and contain commonly used mathematical

8 C++ How to Program, Ninth Edition

expressions. Translator programs called compilers convert high-level language programs into machine
language.

The process of compiling a large high-level language program into machine language can take a
considerable amount of computer time. Interpreter programs were developed to execute high-level language
programs directly (without the need for compilation), although more slowly than compiled programs. Scripting
languages such as the popular web languages JavaScript and PHP are processed by interpreters.

Performance Tip 1.1
Interpreters have an advantage over compilers in Internet scripting. An interpreted program can
begin executing as soon as it’s downloaded to the client’s machine, without needing to be compiled
before it can execute. On the downside, interpreted scripts generally run slower than compiled
code.

1.6 C++

C++ evolved from C, which was developed by Dennis Ritchie at Bell Laboratories. C is available for most
computers and is hardware independent. With careful design, it’s possible to write C programs that are portable
to most computers.

The widespread use of C with various kinds of computers (sometimes called hardware platforms)
unfortunately led to many variations. A standard version of C was needed. The American National Standards
Institute (ANSI) cooperated with the International Organization for Standardization (ISO) to standardize C
worldwide; the joint standard document was published in 1990 and is referred to as ANSI/ISO 9899: 1990.

C11 is the latest ANSI standard for the C programming language. It was developed to evolve the C
language to keep pace with increasingly powerful hardware and ever more demanding user requirements. C11
also makes C more consistent with C++. For more information on C and C11, see our book C How to Program,
7/e and our C Resource Center (located at www.deitel.com/C).

C++, an extension of C, was developed by Bjarne Stroustrup in 1979 at Bell Laboratories. Originally
called “C with Classes”, it was renamed to C++ in the early 1980s. C++ provides a number of features that
“spruce up” the C language, but more importantly, it provides capabilities for object-oriented
programming.

You’ll begin developing customized, reusable classes and objects in Chapter 3, Introduction to Classes,
Objects and Strings. The book is object oriented, where appropriate, from the start and throughout the text.

We also provide an optional automated teller machine (ATM) case study in Chapters 25–26, which
contains a complete C++ implementation. The case study presents a carefully paced introduction to
object-oriented design using the UML—an industry standard graphical modeling language for developing
object-oriented systems. We guide you through a friendly design experience intended for the novice.

C++ Standard Library
C++ programs consist of pieces called classes and functions. You can program each piece yourself, but most
C++ programmers take advantage of the rich collections of classes and functions in the C++ Standard Library.
Thus, there are really two parts to learning the C++ “world.” The first is learning the C++ language itself; the
second is learning how to use the classes and functions in the C++ Standard Library. We discuss many of these
classes and functions. P. J. Plauger’s book, The Standard C Library (Upper Saddle River, NJ: Prentice Hall PTR,
1992), is a must read for programmers who need a deep understanding of the ANSI C library functions included
in C++. Many special-purpose class libraries are supplied by independent software vendors.

Chapter 1 Introduction to Computers and C++ 9

Software Engineering Observation 1.1
Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use existing
pieces wherever possible. Called software reuse, this practice is central to object-oriented
programming.

Software Engineering Observation 1.2
When programming in C++, you typically will use the following building blocks: classes and
functions from the C++ Standard Library, classes and functions you and your colleagues create
and classes and functions from various popular third-party libraries.

The advantage of creating your own functions and classes is that you’ll know exactly how they work.
You’ll be able to examine the C++ code. The disadvantage is the time-consuming and complex effort that goes
into designing, developing and maintaining new functions and classes that are correct and that operate
efficiently.

Performance Tip 1. 2
Using C++ Standard Library functions and classes instead of writing your own versions can
improve program performance, because they’re written carefully to perform efficiently. This
technique also shortens program development time.

Portability Tip 1.1
Using C++ Standard Library functions and classes instead of writing your own improves program
portability, because they’re included in every C++ implementation.

1.7 Programming Languages

In this section, we provide brief comments on several popular programming languages (Fig. 1.5).

Programming language Description

Fortran

Fortran (FORmula TRANslator) was developed by IBM Corporation in the mid-1950s to be used for
scientific and engineering applications that require complex mathematical computations. It’s still widely
used and its latest versions support object-oriented programming.

COBOL

COBOL (COmmon Business Oriented Language) was developed in the late 1950s by computer
manufacturers, the U.S. government and industrial computer users based on a language developed by
Grace Hopper, a career U.S. Navy officer and computer scientist. COBOL is still widely used for
commercial applications that require precise and efficient manipulation of large amounts of data. Its
latest version supports object-oriented programming.

Pascal

Research in the 1960s resulted in structured programming—a disciplined approach to writing programs
that are clearer, easier to test and debug and easier to modify than large programs produced with previous
techniques. One of the more tangible results of this research was the development of Pascal by Professor
Niklaus Wirth in 1971. It was designed for teaching structured programming and was popular in college
courses for several decades.

Ada

Ada, based on Pascal, was developed under the sponsorship of the U.S. Department of Defense (DOD)
during the 1970s and early 1980s. The DOD wanted a single language that would fill most of its needs.
The Pascal-based language was named after Lady Ada Lovelace, daughter of the poet Lord Byron. She’s
credited with writing the world’s first computer program in the early 1800s (for the Analytical Engine
mechanical computing device designed by Charles Babbage). Ada also supports object-oriented
programming.

BASIC

BASIC was developed in the 1960s at Dartmouth College to familiarize novices with programming
techniques. Many of its latest versions are object oriented.

10 C++ How to Program, Ninth Edition

Programming language Description

C

C was implemented in 1972 by Dennis Ritchie at Bell Laboratories. It initially became widely known as
the UNIX operating system’s development language. Today, most of the code for general-purpose
operating systems is written in C or C++.

Objective-C

Objective-C is an object-oriented language based on C. It was developed in the early 1980s and later
acquired by NeXT, which in turn was acquired by Apple. It has become the key programming language
for the OS X operating system and all iOS-powered devices (such as iPods, iPhones and iPads).

Java

Sun Microsystems in 1991 funded an internal corporate research project led by James Gosling, which
resulted in the C++-based object-oriented programming language called Java. A key goal of Java is to be
able to write programs that will run on a great variety of computer systems and computer-control
devices. This is sometimes called “write once, run anywhere.” Java is used to develop large-scale
enterprise applications, to enhance the functionality of web servers (the computers that provide the
content we see in our web browsers), to provide applications for consumer devices (e.g., smartphones,
tablets, television set-top boxes, appliances, automobiles and more) and for many other purposes. Java is
also the key language for developing Android smartphone and tablet apps.

Visual Basic

Microsoft’s Visual Basic language was introduced in the early 1990s to simplify the development of
Microsoft Windows applications. Its latest versions support object-oriented programming.

C#

Microsoft’s three object-oriented primary programming languages are Visual Basic (based on the
original Basic), Visual C++ (based on C++) and C# (based on C++ and Java, and developed for
integrating the Internet and the web into computer applications).

PHP

PHP is an object-oriented, “open-source” (see Section 1.11.2) “scripting” language supported by a
community of users and developers and is used by numerous websites including Wikipedia and
Facebook. PHP is platform independent—implementations exist for all major UNIX, Linux, Mac and
Windows operating systems. PHP also supports many databases, including MySQL.

Perl

Perl (Practical Extraction and Report Language), one of the most widely used object-oriented scripting
languages for web programming, was developed in 1987 by Larry Wall. It features rich text-processing
capabilities and flexibility.

Python

Python, another object-oriented scripting language, was released publicly in 1991. Developed by Guido
van Rossum of the National Research Institute for Mathematics and Computer Science in Amsterdam
(CWI), Python draws heavily from Modula-3—a systems programming language. Python is
“extensible”—it can be extended through classes and programming interfaces.

JavaScript

JavaScript is the most widely used scripting language. It’s primarily used to add programmability to web
pages—for example, animations and interactivity with the user. It’s provided with all major web
browsers.

Ruby on Rails

Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an open-source, object-oriented programming
language with a simple syntax that’s similar to Perl and Python. Ruby on Rails combines the scripting language
Ruby with the Rails web application framework developed by 37Signals. Their book, Getting Real (available
free at gettingreal.37signals.com/toc.php), is a must read for web developers. Many Ruby on Rails
developers have reported productivity gains over other languages when developing database-intensive web
applications. Ruby on Rails was used to build Twitter’s user interface.

Scala

Scala (www.scala-lang.org/node/273)—short for “scalable language”—was designed by Martin
Odersky, a professor at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Released in
2003, Scala uses both the object-oriented programming and functional programming paradigms and is
designed to integrate with Java. Programming in Scala can reduce the amount of code in your
applications significantly. Twitter and Foursquare use Scala.

Fig. 1.5 | Some other programming languages.

1.8 Introduction to Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time when demands for new

Chapter 1 Introduction to Computers and C++ 11

and more powerful software are soaring. Objects, or more precisely—as we’ll see in Chapter 3—the classes
objects come from, are essentially reusable software components. There are date objects, time objects, audio
objects, video objects, automobile objects, people objects, etc. Almost any noun can be reasonably
represented as a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have discovered that using a modular,
object-oriented design-and-implementation approach can make software-development groups much more
productive than was possible with earlier techniques—object-oriented programs are often easier to
understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by pressing its
accelerator pedal. What must happen before you can do this? Well, before you can drive a car, someone has to
design it. A car typically begins as engineering drawings, similar to the blueprints that describe the design of a
house. These drawings include the design for an accelerator pedal. The pedal hides from the driver the complex
mechanisms that actually make the car go faster, just as the brake pedal hides the mechanisms that slow the car,
and the steering wheel hides the mechanisms that turn the car. This enables people with little or no knowledge
of how engines, braking and steering mechanisms work to drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that describe it. A completed car
has an actual accelerator pedal to make the car go faster, but even that’s not enough—the car won’t accelerate
on its own (hopefully!), so the driver must press the pedal to accelerate the car.

Member Functions and Classes
Let’s use our car example to introduce some key object-oriented programming concepts. Performing a task in a
program requires a member function. The member function houses the program statements that actually
perform its task. It hides these statements from its user, just as the accelerator pedal of a car hides from the
driver the mechanisms of making the car go faster. In C++, we create a program unit called a class to house the
set of member functions that perform the class’s tasks. For example, a class that represents a bank account
might contain one member function to deposit money to an account, another to withdraw money from an
account and a third to inquire what the account’s current balance is. A class is similar in concept to a car’s
engineering drawings, which house the design of an accelerator pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can actually drive a car, you must
build an object from a class before a program can perform the tasks that the class’s methods define. The process
of doing this is called instantiation. An object is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can reuse a class many
times to build many objects. Reuse of existing classes when building new classes and programs saves time and
effort. Reuse also helps you build more reliable and effective systems, because existing classes and components
often have gone through extensive testing, debugging and performance tuning. Just as the notion of
interchangeable parts was crucial to the Industrial Revolution, reusable classes are crucial to the software
revolution that has been spurred by object technology.

Messages and Member Function Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—that is, to go faster.
Similarly, you send messages to an object. Each message is implemented as a member function call that tells a

12 C++ How to Program, Ninth Edition

member function of the object to perform its task. For example, a program might call a particular bank account
object’s deposit member function to increase the account’s balance.

Attributes and Data Members
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color, its number of doors,
the amount of gas in its tank, its current speed and its record of total miles driven (i.e., its odometer reading).
Like its capabilities, the car’s attributes are represented as part of its design in its engineering diagrams (which,
for example, include an odometer and a fuel gauge). As you drive an actual car, these attributes are carried
along with the car. Every car maintains its own attributes. For example, each car knows how much gas is in its
own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These attributes are
specified as part of the object’s class. For example, a bank account object has a balance attribute that represents
the amount of money in the account. Each bank account object knows the balance in the account it represents,
but not the balances of the other accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object’s attributes and
member functions are intimately related. Objects may communicate with one another, but they’re normally not
allowed to know how other objects are implemented—implementation details are hidden within the objects
themselves. This information hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new class absorbs the
characteristics of an existing class, possibly customizing them and adding unique characteristics of its own. In
our car analogy, an object of class “convertible” certainly is an object of the more general class “automobile,”
but more specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C++. How will you create the code (i.e., the program instructions) for your
programs? Perhaps, like many programmers, you’ll simply turn on your computer and start typing. This
approach may work for small programs (like the ones we present in the early chapters of the book), but what if
you were asked to create a software system to control thousands of automated teller machines for a major bank?
Or suppose you were asked to work on a team of thousands of software developers building the next U.S. air
traffic control system? For projects so large and complex, you should not simply sit down and start writing
programs.

To create the best solutions, you should follow a detailed analysis process for determining your project’s
requirements (i.e., defining what the system is supposed to do) and developing a design that satisfies them (i.e.,
deciding how the system should do it). Ideally, you’d go through this process and carefully review the design
(and have your design reviewed by other software professionals) before writing any code. If this process
involves analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C++ are object oriented. Programming
in such a language, called object-oriented programming (OOP), allows you to implement an object-oriented
design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for communicating the results of
any OOAD process has come into wide use. This language, known as the Unified Modeling Language (UML),

Chapter 1 Introduction to Computers and C++ 13

is now the most widely used graphical scheme for modeling object-oriented systems. We present our first UML
diagrams in Chapters 3 and 4, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our optional ATM Software Engineering Case Study in Chapters 25–26 we present a simple
subset of the UML’s features as we guide you through an object-oriented design experience.

1.9 Typical C++ Development Environment

C++ systems generally consist of three parts: a program development environment, the language and the C++
Standard Library. C++ programs typically go through six phases: edit, preprocess, compile, link, load and
execute. The following discussion explains a typical C++ program development environment.

Phase 1: Editing a Program
Phase 1 consists of editing a file with an editor program, normally known simply as an editor (Fig. 1.6). You
type a C++ program (typically referred to as source code) using the editor, make any necessary corrections and
save the program on a secondary storage device, such as your hard drive. C++ source code filenames often end
with the .cpp, .cxx, .cc or .C extensions (note that C is in uppercase) which indicate that a file contains C++
source code. See the documentation for your C++ compiler for more information on file-name extensions.

Fig. 1.6 | Typical C++ development environment—editing phase.

Two editors widely used on Linux systems are vi and emacs. C++ software packages for Microsoft
Windows such as Microsoft Visual C++ (microsoft.com/express) have editors integrated into the
programming environment. You can also use a simple text editor, such as Notepad in Windows, to write your
C++ code.

For organizations that develop substantial information systems, integrated development environments
(IDEs) are available from many major software suppliers. IDEs provide tools that support the
software-development process, including editors for writing and editing programs and debuggers for locating
logic errors—errors that cause programs to execute incorrectly. Popular IDEs include Microsoft® Visual
Studio 2012 Express Edition, Dev C++, NetBeans, Eclipse, Apple’s Xcode and CodeLite.

Phase 2: Preprocessing a C++ Program
In Phase 2, you give the command to compile the program (Fig. 1.7). In a C++ system, a preprocessor program
executes automatically before the compiler’s translation phase begins (so we call preprocessing Phase 2 and
compiling Phase 3). The C++ preprocessor obeys commands called preprocessing directives, which indicate
that certain manipulations are to be performed on the program before compilation. These manipulations usually
include other text files to be compiled, and perform various text replacements. The most common preprocessing
directives are discussed in the early chapters; a detailed discussion of preprocessor features appears in Appendix
E, Preprocessor.

Fig. 1.7 | Typical C++ development environment—preprocessor phase.

14 C++ How to Program, Ninth Edition

Phase 3: Compiling a C++ Program
In Phase 3, the compiler translates the C++ program into machine-language code—also referred to as object
code (Fig. 1.8).

Fig. 1.8 | Typical C++ development environment—compilation phase.

Phase 4: Linking
Phase 4 is called linking. C++ programs typically contain references to functions and data defined elsewhere,
such as in the standard libraries or in the private libraries of groups of programmers working on a particular
project (Fig. 1.9). The object code produced by the C++ compiler typically contains “holes” due to these
missing parts. A linker links the object code with the code for the missing functions to produce an executable
program (with no missing pieces). If the program compiles and links correctly, an executable image is
produced.

Fig. 1.9 | Typical C++ development environment—linking phase.

Phase 5: Loading
Phase 5 is called loading. Before a program can be executed, it must first be placed in memory (Fig. 1.10). This
is done by the loader, which takes the executable image from disk and transfers it to memory. Additional
components from shared libraries that support the program are also loaded.

Fig. 1.10 | Typical C++ development environment—loading phase.

Phase 6: Execution
Finally, the computer, under the control of its CPU, executes the program one instruction at a time (Fig. 1.11).
Some modern computer architectures can execute several instructions in parallel.

Problems That May Occur at Execution Time
Programs might not work on the first try. Each of the preceding phases can fail because of various errors that
we’ll discuss throughout this book. For example, an executing program might try to divide by zero (an illegal

Chapter 1 Introduction to Computers and C++ 15

operation for integer arithmetic in C++). This would cause the C++ program to display an error message. If this
occurred, you’d have to return to the edit phase, make the necessary corrections and proceed through the
remaining phases again to determine that the corrections fixed the problem(s). [Note: Most programs in C++
input or output data. Certain C++ functions take their input from cin (the standard input stream; pronounced
“see-in”), which is normally the keyboard, but cin can be redirected to another device. Data is often output to
cout (the standard output stream; pronounced “see-out”), which is normally the computer screen, but cout
can be redirected to another device. When we say that a program prints a result, we normally mean that the
result is displayed on a screen. Data may be output to other devices, such as disks and hardcopy printers. There
is also a standard error stream referred to as cerr. The cerr stream (normally connected to the screen) is
used for displaying error messages.

Fig. 1.11 | Typical C++ development environment—execution phase.

Common Programming Error 1.1
Errors such as division by zero occur as a program runs, so they’re called runtime errors or
execution-time errors. Fatal runtime errors cause programs to terminate immediately without
having successfully performed their jobs. Nonfatal runtime errors allow programs to run to
completion, often producing incorrect results.

1.10 Test-Driving a C++ Application

In this section, you’ll run and interact with your first C++ application. You’ll begin by running an entertaining
guess-the-number game, which picks a number from 1 to 1000 and prompts you to guess it. If your guess is
correct, the game ends. If your guess is not correct, the application indicates whether your guess is higher or
lower than the correct number. There is no limit on the number of guesses you can make. [Note: For this test
drive only, we’ve modified this application from the exercise you’ll be asked to create in Chapter 6, Functions
and an Introduction to Recursion. Normally this application randomly selects the correct answer as you execute
the program. The modified application uses the same correct answer every time the program executes (though
this may vary by compiler), so you can use the same guesses we use in this section and see the same results as
we walk you through interacting with your first C++ application.]

We’ll demonstrate running a C++ application using the Windows Command Prompt and a shell on
Linux. The application runs similarly on both platforms. Many development environments are available in
which you can compile, build and run C++ applications, such as GNU C++, Microsoft Visual C++, Apple
Xcode, Dev C++, CodeLite, NetBeans, Eclipse etc. Consult your instructor for information on your specific
development environment.

In the following steps, you’ll run the application and enter various numbers to guess the correct number.

16 C++ How to Program, Ninth Edition

The elements and functionality that you see in this application are typical of those you’ll learn to program in this
book. We use fonts to distinguish between features you see on the screen (e.g., the Command Prompt) and
elements that are not directly related to the screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif Helvetica font and emphasize filenames, text displayed by an application
and values you should enter into an application (e.g., GuessNumber or 500) in a sans-serif Lucida font. As
you’ve noticed, the defining occurrence of each term is set in blue, bold type. For the figures in this section, we
point out significant parts of the application. To make these features more visible, we’ve modified the
background color of the Command Prompt window (for the Windows test drive only). To modify the
Command Prompt colors on your system, open a Command Prompt by selecting Start > All Programs >
Accessories > Command Prompt, then right click the title bar and select Properties. In the "Command
Prompt" Properties dialog box that appears, click the Colors tab, and select your preferred text and
background colors.

Running a C++ Application from the Windows Command Prompt
1. Checking your setup. It’s important to read the Before You Begin section at www.deitel.com/books/

cpphtp9/ to make sure that you’ve copied the book’s examples to your hard drive correctly.
2. Locating the completed application. Open a Command Prompt window. To change to the directory for

the completed GuessNumber application, type cd C:\examples\ch01\GuessNumber\Windows, then
press Enter (Fig. 1.12). The command cd is used to change directories.

Fig. 1.12 | Opening a Command Prompt window and changing the directory.

3. Running the GuessNumber application. Now that you are in the directory that contains the
GuessNumber application, type the command GuessNumber (Fig. 1.13) and press Enter. [Note:
GuessNumber.exe is the actual name of the application; however, Windows assumes the .exe
extension by default.]

Fig. 1.13 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first guess.", then displays a
question mark (?) as a prompt on the next line (Fig. 1.13). At the prompt, enter 500 (Fig. 1.14).

Fig. 1.14 | Entering your first guess.

Chapter 1 Introduction to Computers and C++ 17

5. Entering another guess. The application displays "Too high. Try again.", meaning that the value you
entered is greater than the number the application chose as the correct guess. So, you should enter a
lower number for your next guess. At the prompt, enter 250 (Fig. 1.15). The application again displays
"Too high. Try again.", because the value you entered is still greater than the number that the
application chose as the correct guess.

Fig. 1.15 | Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game by entering values until you guess the correct
number. The application will display "Excellent! You guessed the number!" (Fig. 1.16).

Fig. 1.16 | Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess correctly, the application asks if
you’d like to play another game (Fig. 1.16). At the "Would you like to play again (y or n)?"
prompt, entering the one character y causes the application to choose a new number and displays the
message "Please type your first guess." followed by a question mark prompt (Fig. 1.17) so you
can make your first guess in the new game. Entering the character n ends the application and returns
you to the application’s directory at the Command Prompt (Fig. 1.18). Each time you execute this
application from the beginning (i.e., Step 3), it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

Fig. 1.17 | Playing the game again.

18 C++ How to Program, Ninth Edition

Fig. 1.18 | Exiting the game.

Running a C++ Application Using GNU C++ with Linux
For this test drive, we assume that you know how to copy the examples into your home directory. Please see
your instructor if you have any questions regarding copying the files to your Linux system. Also, for the figures
in this section, we use a bold highlight to point out the user input required by each step. The prompt in the shell
on our system uses the tilde (~) character to represent the home directory, and each prompt ends with the dollar
sign ($) character. The prompt will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed GuessNumber
application directory (Fig. 1.19) by typing

then pressing Enter. The command cd is used to change directories.

Fig. 1.19 | Changing to the GuessNumber application’s directory.

2. Compiling the GuessNumber application. To run an application on the GNU C++ compiler, you must
first compile it by typing

as in Fig. 1.20. This command compiles the application and produces an executable file called
GuessNumber.

Fig. 1.20 | Compiling the GuessNumber application using the g++ command.

3. Running the GuessNumber application. To run the executable file GuessNumber, type ./GuessNumber at
the next prompt, then press Enter (Fig. 1.21).

Fig. 1.21 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first guess.", then displays a
question mark (?) as a prompt on the next line (Fig. 1.21). At the prompt, enter 500 (Fig. 1.22). [Note:
This is the same application that we modified and test-drove for Windows, but the outputs could vary
based on the compiler being used.]

Chapter 1 Introduction to Computers and C++ 19

5. Entering another guess. The application displays "Too high. Try again.", meaning that the value you
entered is greater than the number the application chose as the correct guess (Fig. 1.22). At the next
prompt, enter 250 (Fig. 1.23). This time the application displays "Too low. Try again.", because the
value you entered is less than the correct guess.

6. Entering additional guesses. Continue to play the game (Fig. 1.24) by entering values until you guess
the correct number. When you guess correctly, the application displays "Excellent! You guessed the
number."

Fig. 1.22 | Entering an initial guess.

Fig. 1.23 | Entering a second guess and receiving feedback.

Fig. 1.24 | Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess the correct number, the application
asks if you’d like to play another game. At the "Would you like to play again (y or n)?" prompt,
entering the one character y causes the application to choose a new number and displays the message
"Please type your first guess." followed by a question mark prompt (Fig. 1.25) so you can make
your first guess in the new game. Entering the character n ends the application and returns you to the
application’s directory in the shell (Fig. 1.26). Each time you execute this application from the
beginning (i.e., Step 3), it will choose the same numbers for you to guess.

20 C++ How to Program, Ninth Edition

Fig. 1.25 | Playing the game again.

Fig. 1.26 | Exiting the game.

1.11 Operating Systems

Operating systems are software systems that make using computers more convenient for users, application
developers and system administrators. They provide services that allow each application to execute safely,
efficiently and concurrently (i.e., in parallel) with other applications. The software that contains the core
components of the operating system is called the kernel. Popular desktop operating systems include Linux,
Windows and OS X (formerly called Mac OS X)—we used all three in developing this book. Popular mobile
operating systems used in smartphones and tablets include Google’s Android, Apple’s iOS (for iPhone, iPad
and iPod Touch devices), BlackBerry OS and Windows Phone. You can develop applications in C++ for all of
the following key operating systems, including several of the latest mobile operating systems.

1.11.1 Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a graphical user interface
built on top of DOS—an enormously popular personal-computer operating system that users interacted with by
typing commands. Windows borrowed from many concepts (such as icons, menus and windows) developed by
Xerox PARC and popularized by early Apple Macintosh operating systems. Windows 8 is Microsoft’s latest
operating system—its features include enhancements to the user interface, faster startup times, further
refinement of security features, touch-screen and multitouch support, and more. Windows is a proprietary
operating system—it’s controlled by Microsoft exclusively. Windows is by far the world’s most widely used
desktop operating system.

1.11.2 Linux—An Open-Source Operating System

The Linux operating system is perhaps the greatest success of the open-source movement. Open-source
software departs from the proprietary software development style that dominated software’s early years. With
open-source development, individuals and companies contribute their efforts in developing, maintaining and
evolving software in exchange for the right to use that software for their own purposes, typically at no charge.
Open-source code is often scrutinized by a much larger audience than proprietary software, so errors often get
removed faster. Open source also encourages innovation. Enterprise systems companies, such as IBM, Oracle
and many others, have made significant investments in Linux open-source development.

Some key organizations in the open-source community are the Eclipse Foundation (the Eclipse Integrated
Development Environment helps programmers conveniently develop software), the Mozilla Foundation

