Chapter Two
C Data Types

F2F CHIExRD

As in other programming languages, data can be of two types: constants

and variables.

2.1 Constants (¥=

As the name suggests, a constant does not change its value in a program.

Some example of constants are shown in Table 2.1 below.

Table 2.1 some examples of constants

Type of constant Examples Remarks

Integer 100, -3, 0 Whole numbers that can be
positive, negative or zero.

Float 0.34, -12.34, 8.0 Numbers with decimal parts.

Character 'x', 'X', 'x','1! Any character enclosed in single
quotation marks.

String "abc", "AL1OQ", "1 One or more characters enclosed in

double quotation marks.

2.2 Variables (&T&)

Unlike a constant, a variable can vary its values in a program, and you
must also define a variable before you can use it. A variable is defined by

giving it a data type and a name.

Program Example P2A

1 int main{()

2 |

3 int vl ;

4 float v2 ;

5 char v3 ;

6 vl = 65 ;

7 v2 = -18.23 ;
8 v3 = 'a';

9 return 0 ;

10 }

This is an example of a C program.
The line numbers on the left are for reference only and are not part of the

program.

5 HAb g R H —FE, Cif
PR o PR T

e =]
EEMTE.

A B, R AR s 1T
A PR R A

HEEAN, LRERFE
Frad Feh HAEE T LAY
FEAE AR R AT, 2020 e X A8
PETE o P SO R
WURAR E A BRI A TR

R CREFP s, 0T
ZEM A5 RO TR Tr
fifl, EIARIETF B —FR

Chapter Two C Data Types

7

The program starts with the line
int main ()

This line marks the point where a C program starts to execute and must
appear once only in a C program.

The program statements are contained within the braces { and } on lines
2 and 10. Each statement ends with a semicolon (;). The spaces before
the semicolon and on each side of the equals sign are not essential and
are used here only to improve the readability of the program.

Lines 3, 4 and 5 of this program define three variables: v1, v2, and v3.
You can give a variable any name you wish, provided you keep within
the following four rules:

1. A variable name can only be constructed using letters(a-z, A-Z),
numerals (0-9) or underscores().

2. A variable name must start with a letter or an underscore.

3. A variable name cannot be a C keyword. A keyword is a word that has
a special meaning. See appendix A for a list of keywords.

4. A variable name can contain any number of characters, but only the

first thirty-one characters are significant to the C compiler.
The valid and invalid variable names are shown in Table 2.2.

Table 2.2 valid and invalid variable names

Name Remarks

month 1 sales This is a valid variable name.

monthlsales Valid, but not as readable asmonth_1_sales.
lst month sales Invalid. The name does not start with a letter or an
underscore.

month 1 sales% Invalid. Spaces and % are not allowed.

Xyz Valid, but variable names should be meaningful.
SalesForThisWeek Valid and meaningful.

int Invalid. This is a keyword.

Lines 3 to 5 of program P2A define v1 as an integer variable, v2 as
a floating-point (can hold decimals) variable, and v3 as a character
variable. Note that variable names are case-sensitive, i.e. the variable V1
is different from the variable v1.

Lines 6 to 8 of the program assign values to the variables. The value
assigned to each variable is stored in the computer’s memory.

The return statement on line 9 terminates the execution of the program
and returns the integer 0 to the operating system. The 0 value is an
indication to the operating system that the program executed successfully

with no errors.

CHE ¥ /& Llint main()T JF
W, EbrEERTITH
A, R HEE B
— W FEIFE A}
Bt 5E2~101T Z 8] /Y 15) 15
ok, BAREAYI LIS A
W, T RN L Y
BN ELT Y, B
SN T R R AT

P34, SITIEMEXT
AR VL, V2, V3. fEi
SFLAUN RIS T, TR
P A AL R A 4

1 A8 He i S FE A
(a~z, A~Z), B5F(0~9)
AL () FRL.

2. A B4 HBELL TR E N W
%Ik,

3. AREHCIHE F 1y sk 7 X
FE SCIY LA RIS L
1], 2 UL B SRA T G
FHF,

4. A DA SRR
B FAF, AHXFFCYi i o
deit, RARBINFHA
EEBEXM,

T FP2AMI S 3~5FT /8 L T %%
RISV PR (AT DA/
) AS V2 FAFRIAR VS,
W, B4R R ING U
By, AR VIS Ry
AR A

TRIF B 6~81 T M AL HE R,
FEAAR w8 I E ARG TE AT
H,

FFT Mreturnify 1) F T 45 08
BIFHHAT, JFR Il —A4- 4
OGS ENE R G IR [F 25 R 1E
RYMOEFR T 2 IEH 45
W, B AR

8 BOERR C #Pixit (55 2 i) (Learn C through English and Chinese, Second Edition)

2.3 Simple output to the screen
(e R R)

Now that you have assigned values to the variables, how do
you display their values on the screen? You can do this with

printf (pronounced print-f) as shown in the next program.

Program Example P2B

1 #include <stdio.h>

2 int main ()

3 |

4 int v1 ;

5 float v2 ;

6 char v3 ;

7 vl = 65 ;

8 v2 = -18.23 ;

9 v3 = 'a' ;

10 printf("vl has the value %d\n", vl) ;
11 printf("v2 has the value %f\n", v2) ;
12 printf("v3 has the value %c\n", v3) ;
13 printf("End of program\n") ;

14 return 0 ;

15 }

When you compile and run this program you will get the
following on your screen:

vl has the value 65

v2 has the value -18.230000

v3 has the wvalue a

End of program

Line 1 is an example of a preprocessor directive. This line
will be in nearly every program that you write. (Preprocessor
directives are covered in Chapter Fourteen.)

printf() is a standard library function for displaying data
on the screen. The printf () functions in lines 10 to 12
have a string of characters enclosed in double quotation
marks (called the format string) followed by a comma and a
variable name. The variable name is not in quotation marks.
Let’s look at the first printf () in line 10 and see how
it works. All the characters between the double quotation
marks up to the % symbol are displayed. The screen will

then show:
vl has the wvalue

The letter d is called a conversion character and is preceded

by a % sign. The %d (%1 can also be used) displays the

WEAR B 20 b AT TR, R4
LU PR T i 2 R L |
printf,

T E— AT ERS, X—1TJLT
HPERR IR (b EEE AN AEE 14 7
).

PR B printf()& — A FAEBE 5 L Bon 5L
PEAIARE R R, BT H510~121 71 printf)
355 TP — A WS S FE ok 1Y 5
frds, R ER SR, WS EmE—
ANES, B AR, TRAARRE

R A R PR ARG 5

XG5 LT % Z i P AR s 2 57
#e Lo

TATAPRN AT, IR % E
PR, %d (s %) TRk e A

Chapter Two C Data Types 9

variable v1 as a decimal integer on the screen. The variable
v1 has the value 65, so the entire printf () on line 10

displays:
vl has the value 65

The newline character (\n) at the end of the format string is
an instruction to skip to the next line of the screen.

In the printf () functions on lines 11 and 12, the %f
displays v2 as a floating-point number and the $c displays
v3 as a character.

It is not always necessary to have a variable in a printf ().
The printf () on line 13 has no variable and simply

displays the line:

End of program

2.4 Comments (%)

Comments are added to a C program to make it more readable
for the programmer, but they are completely ignored by the
computer. Comments start with the characters /* and end
with the characters */. We can add some comments to the

last program.

Program Example P2C

RV LR B R .

& A 45 H e n B\ AT A, HAE
RN Chn Bk % B BE 4 N — A7 AR 16 07
B R E 1AT B 1247 Wprintf()Hr, i
FH%E LA s B0 Xk s v2 (e, i I %c
DL kg i hv3 1fE.

printf()FF AR AN SR Y, WEE134 5
) printf() FHRRBA AR i, HUR T S
FAFER

FECHE T H AT A m LUK e P 14y m] 332
Peo R IATRE R, IR
AW ENT . CHEF TR LU TT
U PUR/ER

*/

*/

1 /* Program Example P2C

2 Introduction to variables in C. */

3 #include <stdio.h>

4 int main ()

5 |

6 int vl ; /* vl is an integer variable.

7 float v2 ; /* v2 is a floating-point variable. */
8 char v3 ; /* wv3 is a character variable.

9 /* Now assign some values to the variables. */

10 vl = 65 ;

11 v2 = -18.23 ;

12 v3 = 'a' ;

13 /* Finally display the variable values on the screen. */
14 printf("vl has the value %d\n", vl) ;

15 printf("v2 has the value %f\n", v2) ;

16 printf("v3 has the value %c\n", v3) ;

17 printf("End of program\n") ;

18 return 0 ;

19 }

Comments can be placed anywhere in a C program and can
span more than one line. Just make sure a comment starts
with /* and ends with */.

FEREAT LUICEAERR P P AT, JFH
LA AT, R IR R N A
PP L L a5 BT

10 BOERR C #Pixit (55 2 i) (Learn C through English and Chinese, Second Edition)

Comments cannot be nested, i.e. you cannot have a
comment within another comment.

Typically, comments are placed at the start of the program
to describe the purpose of the program, the author, date
written and any other relevant information, such as the
version number. For example:

: P2A.

Introduction to variables in C.

Written by
Date

/* Program name

: Paul Kelly and Su Xiaohong.
: June 29, 2012.

Version number: 1.0 */

Comments are also used to describe in plain language
the function of a particular section of a program. Get into
the habit of using good explanatory comments; the more
complicated the program becomes, the more valuable they
will be to you and any other programmer reading your

program.
2.5 Datatypes (##EZ2])

In previous programs, it was shown how to declare a
variable and associate it with a particular data type (char,
int or float). The C language has a variety of other data
types besides the three basic types of char, int and float.
Different data types require different amounts of memory
and therefore vary in the range of values they can store.
Details of the various data types in the C language are given
in appendix D.

2.5.1

A short integer has a smaller range of values than an integer

Short integer data types

and consequently uses less memory.
The following defines a variable v1 as a short integer:

short int v1 ;
The keyword int is optional, so v1 can also be defined as:
short v1 ;

A short int variable, like an int variable, is displayed

using %d as the format specifier in printf (). For example:

printf("%d", vl) ;

ERATLIRE, BIANREE—MERTIR
s — AR

M ERE P BT O BT R, T Ul
MIRRRP IR . A3 . 'S B H B R
—BEHICAYE R, WA 545

TE R] T3 o g 93t 49 3 A ik A
B P 2SI BE . ER IR P R
INRAFTERER I, R 2, R
e AR R 53 1 75 0 (R BR

TERTE AR P, AT &F 2 df] 75
WIS, el AR i 5 — PR
A (Uichar, int, float) JCEKAL K. BR
Tchar, int, floatiX = FhFEAS (1) 5 P5 IS HY
ZAk, CIEF R T 2 A ry £ i 2
R ORTR P B R HAS TR) KN S A
23], PR AT AN TR A U L

FERETUREF R IV EUEVE BN T HEAEE Y
AFRE 3t B P AT D

TEXHL, SCHE Y int & T ERY, FrlAvidsn]
PLE SO M B

FIHEA R B, (il Hlprintf() PRECH
MRS RS MR, [RIREL O vedA® 2 U%
B

Chapter Two C Data Types 11

2.5.2 Long integer data types

A long integer has a larger range of values than an integer.

The following defines a variable v2 as a long integer:

long int v2 ;

The keyword int is optional here, so v2 can also be defined
as:

long v2 ;

To display a 1long int variable, the format specifier $1d is
used in printf (). For example:

printf("%$1d4d", v2) ;

2.5.3 Unsigned integer data types

The keyword unsigned extends the positive range of an
integer variable but does not allow negative values to be
stored.

The following defines unsigned integer variables v3 and
vé:

unsigned int v3 ;

unsigned long int v4 ;

To display these variables, $u and %1u are used as the
format specifiers in print £ (). For example:

printf("%u %$lu", v3, v4) ;

2.5.4 Double floating-point data type

The double data type allows you to increase the range and
precision (or accuracy) of a floating-point number.
The following defines a variable v5 as a double data type:

double v5 ;

To display the value in a double variable, either $1f or
%f can be used as the format specifier in printf (). For

example:

printf("$1f", v5) ;

2.6 Data type sizes (#IFZEEAIK/N)
The next program uses the sizeof() operator to display
the number of bytes of memory required by some of the

common data types in C.

KA A ROU Y UETE R

i Fiprintf()%y R B ARIAR S g E,
o FH 01 dA AL A

KB Funsigned) JiE | RE AR B AT ISR IA
AR ECAYE , (H Rl A RE A
fil ks

S Y printf()RS HH IG5 AR
(IR, e R ou ool s A A

doubleZ& R 7 1 17 s BRI A0 BUAEL Y Rl
FVRGRE

JHprintf() pE ¥k H double 875 F (Y (ET
B o] DA %l 4% 20 454, ml LA
%ol i FFARST

T 4 R i sizeof()iE 244k B R C
W R — e FHEE S R T & A A T
(SR

12

PR C BEFEGT (45 2) (Learn C through English and Chinese, Second Edition)

Program Example P2D

1
2
3
4
5
6
5
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/* Program Example P2D
Program to display the amount of memory required by
some of the common data types in C. */

#include <stdio.h>

int main ()

{

int char size, int size,

short_size, long_size,

float size, double size ;

char size = sizeof(char) ;

int size = sizeof(int) ;

short size = sizeof(short int) ;

long size = sizeof (long) ;

float size = sizeof(float) ;

double size = sizeof(double) ;

printf (" Data type Number of bytes\n") ;
printf(" --------—- ——m——————————— \n") ;
printf(" char $d\n", char size) ;
printf(" int $d\n", int size) ;
printf(" short int %d\n", short size) ;
printf(" long int %d\n", long size) ;
printf(" float $d\n", float size) ;
printf(" double $d\n", double size) ;

return 0 ;

}

Lines 7 and 8 of this program define six integer variables.

Lines 10 to 15 use the sizeof () operator to assign the size in bytes of

each data type to one of the six variables.

Lines 17 to 24 display the value in each of the six variables.

The output from this program is:

Data type

Number of bytes

int

short int

float

1
4
2
long int 4
4
double 8

PP TATIEE8 T L T6
AEERI R, 5510 ~151 T
sizeof()iz AT AL BRI AL
P JE AT 7 A7 28 [B) 9 24T
B, SRIGIRIELZA AR Y678
Ho H517~2417 WoR k6 AR
HE.

Chapter Two C Data Types

13

Programming pitfalls

1. Do not type a semicolon after either
#include <stdio.h>
or
int main ()

2. Comments start with /* and end with */.
Forgetting to end a comment with */ may cause part of your program
to be ignored by the compiler. For example:
printf ("Linel\n"™) ;
/* This comment does not end properly
printf("Line2\n") ;
printf("Line3\n") ;
/* The compiler thinks the comment ends here -> */

printf("Lined4\n") ;

The statements above will only display Linel and Line4. All the
statements between /* at the start of the second line and */ at the end
of the fifth line are regarded as a comment.

3. Comments cannot be nested, i.e. you cannot have a comment within

another comment.
/* This is an error because you cannot /*nest*/ comments */

4. Use the correct format specifier when displaying a variable using printf ().
For example,
float var ;
var = 123.56 ;
printf("%d", var) ;
will incorrectly display the value in the variable var, because var is
a float and %d is used for displaying an integer.

5. The second character in the printf () format specifiers $1d and $1£

is the letter ell, not the number one.
Quick syntax reference

At the end of each chapter the most important features of the C syntax
covered in the text are briefly summarised. While not covering the strict
definition of the syntax, which can be complex for a beginner, it should

prove to be a useful “memory jog” while writing programs.

1. ANZ A #include <stdio.h>Fl
int main())& ETAN N5 ¢

2. ERBELAATTAR, LIs/ATR
ALY/ SE RO S EOT
T 7 B A T 22

T A R iR Linel
FiLined. i F 55247 I 3k
R/ R STT AT A Y%/ 2 [7)
AR E TR AL HL,

3B E, RIARESE—
MERP L E S — I ER

4. i FHprintf() PREL i/~ A8 &
{H B A FH 5 A8 2SR AH
XFIE I TE A A A U 4
o N HIE RS RE IE
WAt varfE, - Avar
JEfloatZE Y, M %dE B~
FERVE A% AT

5. printf() ek & 1Y k& =X 5% 4
FFold Rl A 55274
TR, AR,

TERRR R, BARE P B
AR B G TR A —
(A BEA0EAS , B P
SPETFEIT A RE Lo TR
FE RPN, W TR
RCAZ AR R A I .

14 BOERR C #Pixit (55 2 i) (Learn C through English and Chinese, Second Edition)

Syntax

Examples

#include <stdio.h>

Start of program int main ()

{

char variable (s
int variable (s

float variable (s

Defining variables

short int variable (s
double variable (s

unsigned variable (s)

char any letter, y or n ;
int distance ;

float average, pay, tax ;
short int temperature ;
double total, number ;

unsigned int employee num ;

Assignment =

tax = 59.75 ;

Comments /*

/* Explanatory text. */

printf (text)

Display on the screen

printf ("Tax Program\n")

printf (format,variables) ;

printf ("Tax is $£f", tax) ;

return 0 ;

End of program)

Exercises

1.

2.

3.

Which of the following are valid variable names? If valid, do you think the name is a good mnemonic

(i.e. reminds you of its purpose)?
(a) stock _code

(b) money$

(c) Jan_sales

(d) x-raY

(e) int

() xyz

(g) 1a

(h) invoice total

(i) john's_exam mark

(j) default

Identify the data type of each of the following constants:

(a) 'x"
(b) -39
(c) 39.99
(d)-39.0

Which of the following are valid variable definitions?

(a) integer account code ;
(b) float balance ;

(c) decimal total ;

(d) int age ;

(e) double int ;

(f) char ¢ ;

Chapter Two C Data Types 15

10.

I1.

Write a variable definition for each of the following:

(a) integer variables number of transactionsand age in years

(b) floating-point variables total pay,tax payment, distance and average
(c) a character variable account type

(d) a double variable gross pay

Write the most appropriate variable definition for each of the following:

(a) the number of students in a class

(b) an average price

(c) the number of days since the 1* of January 1900

(d) a percentage interest rate

(e) the most common letter on this page

(f) the population of China (estimated to be 1,339,724,852 in November 2010).
Assuming the following:

int i ;

char c ;

which of the following are valid C statements?

c = 'A" ;
i="1" ;
i=1;

c = "A" ;
c="1";

Write a C program to assign values to the variables in question 4 and display the value of each variable on
a separate line.
Write a C program that displays the following:

R R I i b b I I b b S

* Hello World *

K’k khkhkkkkkkkkhkkkkx

Write a C program to display your name and address on separate lines.
ASCII codes are used to represent letters, digits and other symbols inside the computer’s memory.
Using the ASCII table in appendix C, look up the ASCII code for each of the following characters:

YAY O TRY o'y orgrorgr iyt lyl vyttt v l,l ' '(aspace)

In program P2C, change the %d in line 14 to $c and the $c in line 16 to %d.
Compile and run the modified program. Can you explain the output?
(Hint: See ASCII table in appendix C.)

